The troubleshooting and repair instructions are only applicable to the following unit versions

<table>
<thead>
<tr>
<th>AIRTRONIC L engine-independent air heater for petrol engines</th>
<th>AIRTRONIC L engine-independent air heater for diesel engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater</td>
<td>Order No.</td>
</tr>
<tr>
<td>AIRTRONIC L – B5, 12 volt</td>
<td>20 1859 05 00 00</td>
</tr>
<tr>
<td>AIRTRONIC L – D5, 24 volt</td>
<td>25 2362 05 00 00</td>
</tr>
</tbody>
</table>
Introduction

List of Contents

This list of contents gives you precise information about the contents of the Troubleshooting and Repair Instructions. If you are looking for a term, technical term or you would like an abbreviation explained, please use the relevant index at the end of the instructions, from page 53.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>• Contents ... 2 – 3
 • Foreword ... 4
 • Safety instructions for installation and repair 4
 • Accident prevention .. 4
 • Special text structure, presentation and picture symbols 4
 • Important information before starting work 4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Function</td>
<td>• Cutaway view ... 5
 • Functional description .. 6
 – Switching on ... 6
 – Control in heating mode ... 6
 – Ventilation mode ... 6
 – Switching off ... 6
 • Control and safety devices .. 7
 • Forced shutdown ADR / ADR99 .. 7
 • Emergency stop (EMERGENCY OFF) 7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Product information</td>
<td>• Technical data AIRTRONIC L – petrol / diesel 8
 • Check values ... 9
 – Test speed for the blower .. 9
 – Resistance values ... 9
 – Switching value ... 9
 – Exhaust emission specification ... 9
 – Check “external” temperature sensor 9
 – Table of values – “external” temperature sensor 9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Troubleshooting</td>
<td>• What to check first in case of faults 10
 – Check .. 10
 – Electrical components .. 10
 – Measure battery voltage ... 10
 – Measure voltage supply (CI 30) ... 10
 – Check switch-on-signal ... 10
 – Check control unit .. 10
 – Overview of the individual test equipment and control units 11
 – Locking the control box .. 11
 – Cancel the control box lock ... 11
 – Check control unit .. 12
 – Before the test ... 12
 – Check the setpoint potentiometer of the control unit 12
 • Fault diagnosis using the diagnostic unit 13, 14
 • EDITH customer service program with ISO adapter 15
 • EDITH customer service program with basic adapter 16
 • Fault diagnosis using the module timer 17
 • Fault diagnosis using the radio remote control TP5 18
 • EasyStart R+ radio remote control 19
 • Fault code table .. 20 – 24</td>
<td></td>
</tr>
</tbody>
</table>
1 Introduction

List of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
</table>
| 5 | Repair instructions | • Repair instructions .. 25
 | | • Always observe the following safety instructions before working on the heater .. 25
 | | • Special tool AMP release tool .. 25
 | | • Assembly drawing .. 26
 | | • Parts list ... 27
 | | • Repair step 1 Dismantle / assemble glow plug .. 28
 | | • Repair step 2 Dismantle / assemble lining ... 28
 | | • Repair step 3 Dismantle / assemble control box 28
 | | • Repair step 4 Dismantle / assembly combination sensor (overheating / flame sensor) .. 29
 | | Check combination sensor ... 30
 | | • Repair step 5 Dismantle / assemble combustion air fan 30
 | | • Repair step 6 Replace the combustion chamber cover seal 32
 | | • Check fuel supply ... 33
 | | • Measuring the fuel quantity .. 33 |
| 6 | Circuit diagram | • Parts list AIRTRONIC L – 12 volt / 24 volt ... 34
 | | • Parts list AIRTRONIC L – ADR – 12 volt / 24 volt .. 34
 | | • Circuit diagram AIRTRONIC L – 12 volt / 24 volt ... 35
 | | • Circuit diagram for control units ... 36 – 40
 | | • Circuit diagram AIRTRONIC L – ADR – 12 volt / 24 volt .. 35
 | | • Circuit diagram control units – ADR .. 41
 | | • Parts list circuit diagram control unit EasyStart R+ / R / T 43
 | | • Pin assignments ... 44
 | | • Circuit diagram control units – EasyStart R+ ... 45
 | | • Circuit diagram control units – EasyStart R ... 46, 47
 | | • Circuit diagram control units – EasyStart T ... 48
 | | • Circuit diagram control units – EasyStart T – ADR 49 |
| 7 | Service | • Certifications .. 41
 | | • Disposal .. 41
 | | • EC Declaration of Conformity ... 41
 | | • Representatives abroad ... 42, 43 |
| 8 | Index | • Index ... 44
 | | • List of abbreviations .. 45 |
1 Introduction

Foreword

These Troubleshooting and Repair Instructions are applicable to the heaters listed on the title page, to the exclusion of all liability claims. Depending on the version or revised status of the heater, there may be differences between it and these troubleshooting and repair instructions. The user must check this before carrying out the repair work and, if necessary, take the differences into account.

⚠️ Caution!
Safety instructions for installation and repair!

Improper installation or repair of Eberspächer heaters can cause a fire or result poisonous exhaust entering the inside of the vehicle. This can cause serious and even fatal risks.

The heater may only be installed according to the specifications in the technical documents or repaired using original spare parts by authorised and trained persons. Installation and repairs by unauthorised and untrained persons, repairs using non-original spare parts and without the technical documents required for installation and repair are dangerous and therefore are not permitted.

A repair may only be carried out in connection with the respective unit-related technical description, installation instructions, operating instructions and maintenance instructions. This document must be carefully read through before / during installation and repair and followed throughout. Particular attention is to be paid to the official regulations, the safety instructions and the general information.

⚠️ Please note!

The relevant rules of sound engineering practice and any information provided by the vehicle manufacturer are to be observed during the installation and repair. Eberspächer does not accept any liability for defects and damage, which are due to installation or repair by unauthorised and untrained persons. Compliance with the official regulations and the safety instructions is prerequisite for liability claims. Failure to comply with the official regulations and safety instructions leads to exclusion of any liability of the heater manufacturer.

Accident prevention

General accident prevention regulations and the corresponding workshop and operating safety instructions are to be observed.

Special text structure, presentation and picture symbols

Special text formats and picture symbols are used in these instructions to emphasise different situations and subjects. Please refer to the following examples for their meanings and appropriate action.

Special text formats and presentations
- A dot (*) indicates a list, which is started by a heading.
 - If an indented dash (–) follows a “dot”, this list is a subsection of the black dot.

Picture symbols

⚠️ Danger!
This information points out a potential serious or fatal danger. Ignoring this information can result in severe injuries.

⚠️ Caution!
This information points out a dangerous situation for a person and / or the product. Ignoring this information can result in injuries to people and / or damage to machinery.

Important information before starting work

Initial commissioning of the heater or functional test after a repair

- After installing the heater, the whole fuel supply system must be carefully vented: please refer to and follow the vehicle manufacturer’s instructions.
- During the heater trial run, all fuel connections must be checked for leaks and secure, tight fit.
- If faults occur while the heater is running, use a diagnostic unit to determine and correct the cause of the fault.
1. Module timer
2. Changeover switch „heat / ventilate“
3. Fuse bracket
 - Main fuse 25 A
 - Fuse, „actuation“ 15 A
4. Heater impeller
5. Control box
6. Intake hood
7. Combustion air fan
8. Glow plug
9. Jacket shell, top
10. Combination sensor (overheating and flame sensor)
11. Outlet hood
12. Outflow
13. Safety grille
14. Electrical motor
15. Combustion air intake silencer
16. Fuel connection
17. Combustion chamber
18. Flame pipe
19. Heat exchanger
20. Jacket shell, bottom
21. Metering pump
22. Pot-type strainer
23. T-piece
24. Exhaust pipe

F = Fresh air
W = Hot air
V = Combustion air
A = Exhaust
B = Fuel
Description of functions

Switching on / starting the heater
When the heater is switched on, the control lamp in the control unit lights up.

The fan starts up in the fan stage "LOW". The glow plug starts with a 3 second delay. After approx. 45 seconds the fuel supply starts and the fuel / air mixture in the combustion chamber ignites.

The fan switches from fan stage "LOW" to fan stage "MEDIUM". The glow plug is switched off after 165 seconds, when a stable flame has formed.

The fan switches from fan stage "MEDIUM" to fan stage "HIGH".

The heater is run at an increased heating capacity of 5.5 kW (stage "POWER") in order to quickly reach the heater’s operating temperature. If the heater’s operating temperature has been reached, the heating capacity is reduced to 4.8 kW (stage "HIGH"). The length of time for which the heater is run with an increased heating output depends on the ambient temperature.

Control in heating mode
If the intake or ambient temperature set at the control device (10 °C up to 30 °C) has been reached, the heater switches to the "LOW" control level and then continues to run with a low fan motor speed.

If the heat flow at the "LOW" control level of 1.2 kW or 2.0 kW is insufficient, the heater switches to the "MEDIUM" control level. The fan continues to run at a low speed. In most cases the "LOW – MEDIUM – LOW" control at a low speed will cover the heating requirements.

If the heat flow at the "MEDIUM" control level is insufficient, the heater switches back to the "HIGH" control level. This in turn requires the full fan motor speed.

If, in special cases, even less heat flow is required than supplied by the heater at the "LOW" control level, the heater switches to "OFF".

The fan then continues to run for approx. 4 – 5 minutes and, only in recirculation mode, constantly ventilates until it is restarted. The restart takes place at the "MEDIUM" control level at a low fan motor speed.

Ventilation mode
If the heater is set to "Ventilation" at the control element, the fan runs at maximum speed.

Switching off
When the heater is switched off, the control lamp goes out and the fuel delivery is switched off.

The fan continues to run for approx. 4 – 5 minutes to cool down.
Function

Control and safety devices

- If the heater does not ignite within 90 seconds after the fuel starts to pump, the start is repeated. If the heater still does not ignite after another 90 seconds of pumping fuel, the heater is switched off, i.e. the fuel supply is off and the fan runs on for approx. 4 – 5 minutes. After an unacceptable number of failed start attempts, the control box is locked.*

- If the flame goes off by itself during operation, the heater is restarted. If the heater does not ignite within 90 seconds after the fuel pump has restarted, or ignites and goes off again within 15 minutes, the heater is switched off, i.e. the fuel supply is off and the fan runs on for approx. 4 – 5 minutes. This automatic switching off can be cancelled by briefly switching off and on again. Do not repeat the switching off / on routine more than twice.

- In the case of overheating, the combined sensor (flame sensor / overheating sensor) triggers, the fuel feed is interrupted and the heater switched off. Once the cause of the overheating has been eliminated, the heater can be restarted by switching off and on again. After an unacceptable number of failed start attempts, the control box is locked.*

- If the lower or upper voltage limit is reached, the heater is switched off after 20 seconds.

- The heater will not start if the glow plug or blower motor is defective or if the electric lead to the metering pump is interrupted.

- If the combined sensor (flame sensor / overheating sensor) is defect or the electric lead interrupted, the heater starts up and is then switched off again during the start phase.

- The speed of the blower motor is continuously monitored. If the blower motor does not start up or if the speed deviates by more than 10 %, the heater is switched off after 30 sec.

- When the heater is switched off, the glow plug is switched on for 40 seconds (after glowing) while the fan runs on, in order to clean off any combustion residues.

* The lock can be cancelled and the faults read off:
 - using the module timer / EasyStart T
 - using the radio remote control TP5 / EasyStart R+

For other controls:
 - by connecting the diagnostic unit
 - using the customer service program KD2000 / EDiTH.

For operation and fault list, please refer to Page 13 – 24.

Please note!

Do not repeat the switching off / on routine more than twice.

Forced shut-down during ADR / ADR99 operation

In vehicles for the transport of dangerous goods (e.g. tankers), the heater must be switched off before the truck drives into a danger area (refinery, petrol station, etc.). Failure to comply results in the heater automatically switching off if:

- The vehicle engine is switched off.
- An additional unit is started up (e.g. auxiliary drive for unloading pump, etc.).
- A vehicle door is opened (ADR99 regulation, only in France).

The fan then continues to run briefly, for max. 40 seconds.

Emergency stop – EMERGENCY OFF

If an emergency stop – EMERGENCY OFF – is necessary during operation, proceed as follows:

- Switch the heater off at the control unit or
- pull the fuse out or
- disconnect the heater from the battery.
Technical data

<table>
<thead>
<tr>
<th></th>
<th>AIRTRONIC L – B5</th>
<th>AIRTRONIC L – D5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating medium</td>
<td>Air</td>
<td>Air</td>
</tr>
<tr>
<td>Control of the heat flow</td>
<td>Stage</td>
<td>Stage</td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>High</td>
</tr>
<tr>
<td>Heat flow (watt)</td>
<td>5500</td>
<td>4800</td>
</tr>
<tr>
<td>Heater air flow rate without counterpressure (kg/h)</td>
<td>280</td>
<td>275</td>
</tr>
<tr>
<td>Heater code</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Fuel consumption (l/h)</td>
<td>0.75</td>
<td>0.65</td>
</tr>
<tr>
<td>Elect. power consumption (watt) in operation</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>while starting</td>
<td>< 250</td>
<td>< 250</td>
</tr>
<tr>
<td>Rated voltage (volt)</td>
<td>12</td>
<td>12 / 24</td>
</tr>
<tr>
<td>Operating range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower voltage limit: An undervoltage protector installed in the control box switches off the heater when the voltage limit is reached.</td>
<td>approx. 10 volt and 20 volt respectively</td>
<td></td>
</tr>
<tr>
<td>Upper voltage limit: An overvoltage protector installed in the control box switches off the heater when the voltage limit is reached.</td>
<td>approx. 14 volt and approx. 28 volt respectively</td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td>Petrol – standard commercial quality (DIN EN 51600 / DIN EN 228)</td>
<td>Diesel fuel – standard commercial quality (DIN EN 590)</td>
</tr>
<tr>
<td>Permissible ambient temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Heater</td>
<td>Control box</td>
</tr>
<tr>
<td></td>
<td>−40 °C to +50 °C</td>
<td>−40 °C to +75 °C</td>
</tr>
<tr>
<td>Storage</td>
<td>−40 °C to +85 °C</td>
<td>−40 °C to +85 °C</td>
</tr>
<tr>
<td>Maximum air intake temperature</td>
<td>+40 °C</td>
<td></td>
</tr>
<tr>
<td>Interference suppression</td>
<td>Suppression class 5 to DIN EN 55025</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 9.3 kg</td>
<td></td>
</tr>
<tr>
<td>Ventilation mode</td>
<td>Possible</td>
<td></td>
</tr>
</tbody>
</table>

Caution! Safety instructions for technical data!

Failure to comply with the technical data can result in malfunctions.

Please note!

Provided no limit values are given, the technical data listed is subject to the tolerances usually applicable to heaters of ±10% for nominal voltage, ambient temperature 20 °C and reference altitude Esslingen.
Check values

Test speed for the blower

Heater 12 volt

At 11.3 volt \(n = 4650 \text{ – 7000 U/min} \)

Heater 24 volt

At 23.6 volt \(n = 4650 \text{ – 6500 U/min} \)

<table>
<thead>
<tr>
<th>Resistance values</th>
<th>12 V</th>
<th>24 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glow plug (heat resistance)</td>
<td>ca. 0.6 Ω ± 0.04 Ω</td>
<td>ca. 2 Ω ± 0.2 Ω</td>
</tr>
<tr>
<td>Metering pump</td>
<td>9.5 Ω ± 0.50 Ω</td>
<td>36.0 Ω ± 1.8 Ω</td>
</tr>
<tr>
<td>Control device setpoint value potentiometer</td>
<td>1750 Ω ±30 Ω – 2180 Ω ±80 Ω</td>
<td></td>
</tr>
</tbody>
</table>

Switching value

Overheating sensor 140 °C – 170 °C measured in the “POWER” control stage and at a distance of 300mm downstream from the hot air outlet.

Exhaust emission specification

CO\(_2\) in exhaust

in control stage “HIGH” 7.5 – 12.5 Vol. %

Smoke spot number < 4 according to Bacharach

Check “external” temperature sensor

(Order No.: 25 1774 89 03 00)

The “external” temperature sensor test must be carried out using a digital multimeter. If the resistance value is not the same as the curve in the diagram or the table of values, replace the temperature sensor.

Table of values – “external” temperature sensor

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Resistance Ω</th>
<th>min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1600</td>
<td>1660</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1670</td>
<td>1730</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1745</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1820</td>
<td>1870</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1895</td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1970</td>
<td>2030</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2050</td>
<td>2110</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2130</td>
<td>2190</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2210</td>
<td>2280</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2295</td>
<td>2370</td>
<td></td>
</tr>
</tbody>
</table>
What to check first in case of faults

- **Check**
 - Fuel in the tank?
 - Fuel pipes leaking? (visual check)
 - Summer diesel in the fuel pipe?
 - Combustion air system or exhaust system damaged or blocked?

- **Electrical components**
 - Cables, connections damaged?
 - Contacts corroded?
 - Fuses defective?
 - Incorrect wiring? (short circuits, interrupted / broken)

- **Measure battery voltage**
 - Battery voltage < 10.5 volt, the undervoltage protection of the 12 volt heater has triggered.
 - Battery voltage < 21 volt, the undervoltage protection of the 24 volt heater has triggered.

- **Measure voltage supply (Cl 30)**
 Disconnect the 16-pin connector S1 / B1 and measure the voltage applied at connector B1 between chamber 1 (cable 2.5 rt) and chamber 10 (cable 2.5 br).
 If it differs from the battery voltage, check the fuses, the supply cables, the negative connection and the positive support point on the battery for voltage drop (corrosion / interruption).

- **Check switch-on signal**
 Disconnect the 16-pin connector S1 / B1 and then switch on the heater at the control unit.
 Check whether voltage is applied in the connector B1 between chamber 4 (cable 0.52 ge) and chamber 10 (cable 2.52 br).
 If no voltage is measured, then check the supply cable (cable 0.52 ge), the 5 A fuse (item 2.7.1 in the circuit diagram) and the control unit.

- **Check control unit**
 Disconnect the connector at the control unit, jumper between the red 0.52 cable and the yellow 0.52 cable.
 If a voltage is measured in connector B1 between chamber 4 (cable 0.52 ge) and chamber 10 (cable 2.52 br), then replace the control unit.
Troubleshooting

Overview of the individual test equipment and control units

The electronic control box can store up to 5 errors, which can be read out and displayed. The following test equipment can be used to query the fault memory in the control box and if necessary to delete the control box locking:

<table>
<thead>
<tr>
<th>Test equipment</th>
<th>Order No.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing device for the control device</td>
<td>22 1509 89 00 00</td>
</tr>
<tr>
<td>Diagnostic unit additionally required: Adapter cable</td>
<td>22 1000 31 86 00</td>
</tr>
<tr>
<td>EDITH Customer service program – Basic adapter with software Also required: AIRTRONIC extension</td>
<td>22 1532 89 00 00</td>
</tr>
<tr>
<td>– ISO adapter Also required: Adapter cable</td>
<td>22 1524 89 00 00</td>
</tr>
</tbody>
</table>

If a diagnostics cable is connected, the following control units can also be used:

<table>
<thead>
<tr>
<th>Control units</th>
<th>Order No.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module timer</td>
<td>22 1000 30 34 00</td>
</tr>
<tr>
<td>TP5 radio remote control</td>
<td>22 1000 32 01 00</td>
</tr>
<tr>
<td>EasyStart T</td>
<td>22 1000 32 88 00</td>
</tr>
<tr>
<td>EasyStart R+</td>
<td>22 1000 32 80 00</td>
</tr>
</tbody>
</table>

Please note!
If the fault memory cannot be read out, check the diagnostics cable for correct laying and possible damage.

Locking the control box

The control box is locked if the following faults occur:

- **Too many attempted starts**
 If the heater carries out several failed start attempts in succession – fault code 050 is displayed –> the control box is locked.

- **Overheating**
 If the heater overheats several times in succession – fault code 015 is displayed –> the control box is locked.

Cancel the control box lock

Cancellation of the control box lock depends on the appropriate test equipment and is described on pages 13 – 19.
4 Troubleshooting

Check control unit

Order No. for the testing device – control unit – 22 1509 89 00 00

Before the test

Connect the correct operating voltage (12 or 24 volt) to the testing device, with plus at the red connector socket and minus at the blue connector socket.

- Disconnect socket from the control unit.
- Connect cable loom from testing device with the control unit.
- Set the rotary knob of the control unit to „Heat“, the corresponding red LED in the testing device must light up.
- Set control unit to „0“., then press the „LED – red“ button, the red control lamp in the control unit must light up.
- Set control unit to „Heat“, then press the „LED – green“ button, corresponding red control lamp in the testing device and the green control lamp in the control unit must light up.

Check the setpoint potentiometer of the control unit

Set the „Temperature sensor / Potentiometer“ switch in the testing device to the „Potentiometer“ setting and slowly turn the rotary knob of the control unit.
The green LED – temperature sensor / potentiometer must light up continuously.
In case of a fault, replace the control unit.

Caution!
Operating voltage safety information!
Ensure you use the correct operating voltage, otherwise the connected components can be severely damaged.
4 Troubleshooting

Fault diagnosis using the diagnostic unit

Diagnostic unit
Order No. 22 1529 89 00 00

An adapter cable is required to connect the diagnostic unit.

Adapter cable
Order No. 22 1000 31 86 00

Connect diagnostic unit
- Disconnect the 16-pin connector of the heater’s cable harness and connect the adapter cable.
- The connect the diagnostic unit to the adapter cable.

After the adapter cable and diagnostic unit have been connected the following appears in the display.

Display of the fault memory F1 – F5 or F5 – F1
- The heater is switched on.
- Press the buttons e and f once or several times to display the individual fault memory positions, in ascending or descending order.
Display is as follows:
- e.g. fault memory 2 / fault code 10

Only the fault memory positions with an error code assigned to them are displayed.

Delete fault memory
- Correct cause of fault.
- Press button D -> the heater is switched on.
- Press both L keys simultaneously until the following appears in the display.

Display flashes, heater symbol does not flash
If all the fault memory positions have been deleted the most recent fault is displayed. The most recent fault is not reset to 00 until the heater is restarted.
Display is as follows:
- Heater has no malfunction

If a new, most recent fault exists it is displayed.

Please note!
It is very important to always install in the given order. Fault code, fault description, cause / remedial action are described on Pages 20 to 24.

Enquire fault memory
The current fault is displayed as „AF“ and a 2-digit number and is always written in the memory location F1. Preceding faults are moved to the memory locations F2 – F5, if necessary the content of F5 is overwritten.

- Press button D -> the heater is switched on.
Display is as follows:
- After 8 sec. the following appears in the display:

No fault
or
e.g. current fault / fault code 64
or
Fault diagnosis not possible

Possible causes:
- Adapter cable is not properly connected.
- Control box is defective or not diagnosable (not a universal control box).

Display is as follows:
- e.g. fault memory 2 / fault code 10

Only the fault memory positions with an error code assigned to them are displayed.

Delete fault memory
- Correct cause of fault.
- Press button D -> the heater is switched on.
- Press both L keys simultaneously until the following appears in the display.

Display flashes, heater symbol does not flash
If all the fault memory positions have been deleted the most recent fault is displayed. The most recent fault is not reset to 00 until the heater is restarted.
Display is as follows:
- Heater has no malfunction

If a new, most recent fault exists it is displayed.

Display of the fault memory F1 – F5 or F5 – F1
- The heater is switched on.
- Press the buttons e and f once or several times to display the individual fault memory positions, in ascending or descending order.
Display is as follows:
- e.g. fault memory 2 / fault code 10

Only the fault memory positions with an error code assigned to them are displayed.

Enquire fault memory
The current fault is displayed as „AF“ and a 2-digit number and is always written in the memory location F1. Preceding faults are moved to the memory locations F2 – F5, if necessary the content of F5 is overwritten.

- Press button D -> the heater is switched on.
Display is as follows:
- After 8 sec. the following appears in the display:

No fault
or
e.g. current fault / fault code 64
or
Fault diagnosis not possible

Possible causes:
- Adapter cable is not properly connected.
- Control box is defective or not diagnosable (not a universal control box).

Display is as follows:
- e.g. fault memory 2 / fault code 10

Only the fault memory positions with an error code assigned to them are displayed.

Delete fault memory
- Correct cause of fault.
- Press button D -> the heater is switched on.
- Press both L keys simultaneously until the following appears in the display.

Display flashes, heater symbol does not flash
If all the fault memory positions have been deleted the most recent fault is displayed. The most recent fault is not reset to 00 until the heater is restarted.
Display is as follows:
- Heater has no malfunction

If a new, most recent fault exists it is displayed.
4 Troubleshooting

Cancel the control box lock

- Delete the fault memory as described and switch off the heater using the [] button.
- The control box lock is cancelled and the diagnosis closed. Display is as follows:

Please note!

Not only the defective component, but also a defective current circuit results in a fault being displayed.

1 Heater
2 Adapter cable
3 Diagnostic unit
Troubleshooting

EDiTH customer service program with ISO adapter

Order No. 22 1524 89 00 00

An additional adapter cable is required to connect the ISO adapter (Order No.: 22 1000 31 86 00).

Please note!
- It is very important to always install in the given order.
- Not only the defective component, but also a defective current circuit results in a fault being displayed.
- Fault code, fault description, cause / remedial action are described on Pages 20 – 24.
- The scope of supply does not include the EDiTH customer service software; this must be downloaded from the service portal.

Connect ISO adapter
- Disconnect the heater’s cable harness.
- Connect the adapter cable to the cable harness – as shown in the sketch.
- Connect the adapter cable to the ISO adapter.
- Connect the SUB-D connection cable with the PC and the ISO adapter.

Installing the software on your PC
- Double-click the „setup.exe“ file to start the installation and following the SETUP program instructions.

Enquire / delete fault memory F1 – F5 or cancel the control box lock
- Start the software on your PC:
 - On the desktop
 - Double click the „EDiTH“ icon.
 - Select heater type.
 - Press the „GO“ button.
- Delete fault memory or cancel the control box lock:
 - Press the „Delete fault memory“ button
 - The stored faults F1 – F5 are deleted and the control box is unlocked.

Quit diagnosis
- Press the „STOP“ button -> fault memory enquiry is ended.

1 Heater
2 Adapter cable
3 ISO adapter
4 SUB-D connection cable
Troubleshooting

EDiTH customer service program with basic adapter

EDiTH basic adapter
(Order No.: 22 1532 89 00 00)

An additional extension is required to check the control box
(Order No.: 22 1537 89 00 00).

Please note!

- It is important to always follow the precise connection order as given below!
- The Hall sensor integrated in the control box can only be properly tested in the control box is correctly placed on the extension.
- Only push or pull on the connectors, not on the cables!
- Only use the network cable and RS232 cable with snap ferrites included in the scope of supply. Use original accessories with snap ferrites only to connect the test equipment.
- Not only the defective component, but also a defective current circuit results in a fault being displayed.
- Fault code, fault description, cause / remedial action are described on pages 20 – 24.

Caution! Magnetic field!

During the test operation a magnetic field develops at the adapter. Therefore, do not place any objects such as data media, credit cards, etc. on the adapter or in its immediate vicinity.

Connect basic adapter

- Start computer and wait until the system has successfully booted.
- Start PC software.
- Insert the unit connector of the mains cable in the basic adapter (A) and connect the mains connection (C) to the mains.
- Connect the SUB-D connection cable (B) with the PC and basic adapter (A).

Connect extension and test control box

- Connect the extension to the basic adapter (A).
- Connect the control box (E) to the extension and the adapter (F).
- Switch on the basic adapter (A) at the mains switch (D).
- Select the control box version and operating voltage (12 V / 24 V) in the PC software.
- Start the control box test with the PC software.

A more detailed description of how to operate the basic adapters (A) is given in the EDiTH online help.

Cable colours

- sw = black
- gn = green
- bl = blue

1. Basic adapter
2. SUB-D connection cable
3. Mains connection
4. Mains switch
5. Control box
6. Adapter
4 Troubleshooting

Module timer
(Order No.: 22 1000 30 34 00)

The current fault is displayed as “AF” and is always written in memory position F1.
Preceding faults are moved to the memory locations F2 – F5, if necessary the contents of memory position F5 is overwritten.

Please note!

- Not only the defective component, but also a defective current circuit results in a fault being displayed.
- Fault code, fault description, cause / remedial action are described on pages 20 – 24.

Query fault memory F1 – F5

Condition: The heater is switched off.

- Press [c] key -> the heater is switched on.
- Press [a] key and keep pressed, then press [p] key within 2 seconds.
 Display is as follows:
 AF = current fault
 3 digit number = fault code
 [c] flashes.
- Press [c] key once or several times, fault memory positions F1 – F5 are displayed.

Cancel the control box lock and simultaneously delete the fault memory

Condition: An electrical connection exists from terminal 15 (ignition) to the module timer, 12-pin connector, chamber 10.

- Press [c] key
 Display is as follows:
 the current fault F15 or F50.
- Press button [a], keep it depressed and then press button [p] within 2 seconds.
 The module timer is now in the “Query fault memory” program.
- Switch off ignition (terminal 15).
- Simultaneously press button [c] and button [p], in addition, switch on the ignition (terminal 15) and wait until the following appears in the display.
 After ignition “ON” the following appears in the display:

 ![Display flashes, Heater symbol does not flash]

 - Switch the heater off and on --> the control box is unlocked, the heater restarts.

 After switching the heater off and on and renewed query of the fault memory, the following appears in the display:

 ![Display flashes, Heater symbol does not flash]

 - Time
 - Preset
 - Heat
 - Reverse
 - Forward
4 Troubleshooting

Fault diagnosis using the radio remote control TP5

TP5 radio remote control
Order No. 22 1000 32 01 00

If faults occur while the heater is running, they are displayed with „Err“ after the mobile unit is activated.

In order to carry out the diagnosis, the diagnosis cable (blue / white) must be connected to the stationary unit and the heater cable harness. To this end, please refer to and follow the circuit diagram for the TP5 radio remote control and the heater.
The current fault “F0” is displayed. The stored faults “F1” to “F5” can be queried. The current fault is displayed.

Please note!
- In order to carry out the diagnosis, the diagnostics cable (blue / white) at heater connector, bl/ws at cable harness connector) must be connected to the stationary unit and the heater cable harness. To this end, please refer to and follow the circuit diagram for the radio remote control TP5 and the heater.
- If the diagnostics cable is not connected, the “Diagnosis” menu is blocked.
- Not only the defective component, but also a defective current circuit results in a fault being displayed.
- Fault code, fault description, cause / remedial action are described on Pages 20 – 24.

Enquire / delete fault memory

Use the button to activate the mobile unit. Switch on the heater with the button.
Press the button twice to open the Time setting menu – the time flashes in the display.

Press the button for approx. 2 sec – until the following appears in the display:

Press the button.
Press button.
Press button twice.
Press button.

Malfunction in heater: Heater has no malfunction:

Delete fault memory / cancel the control box lock

Use the button to delete the fault memory.

To confirm, press the button for approx. 2 sec until the following appears in the display:
Troubleshooting

EasyStart R+ radio remote control
(Order No.: 22 1000 32 80 00)

EasyStart T timer
(Order No.: 22 1000 32 88 00)

If faults occur while the heater is running, they are displayed with “Err” after the mobile unit or timer is activated.

The current fault is displayed. The stored faults “F1” to “F5” can be queried.

Please note!

• In order to carry out the diagnosis, the diagnostics cable (bl/ge at heater connector, bl/ws at cable harness connector) must be connected to the stationary unit and the heater cable harness. To this end, please refer to and follow the circuit diagram for the radio remote control and the heater.
• If the diagnostics cable is not connected, the “Diagnosis” menu is blocked.
• Not only the defective component, but also a defective current circuit results in a fault being displayed.
• Fault code, fault description, cause / remedial action are described on Pages 20 – 24.

Enquire / delete fault memory
Activate mobile part / timer (see EasyStart R+ / EasyStart T operating instructions)

Confirm symbol \(\text{III} \) with \(\text{OK} \).

Heater is switched on.

Confirm operating time with \(\text{OK} \).

Briefly press \(\text{OK} \) and \(\text{OK} \) simultaneously.

The following actions are possible

• Call up fault memory.
 Call up the fault memory positions F1 – F5 with \(\text{OK} \) or \(\text{OK} \).

• Call up fault memory again.
 Briefly press \(\text{OK} \) and \(\text{OK} \) simultaneously.

• Delete fault memory (display dEL)
 Press \(\text{OK} \).

 Press \(\text{OK} \) again.

The diagnosis is completed.

Switch off heater.
<table>
<thead>
<tr>
<th>Fault code</th>
<th>Fault description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>No faults</td>
<td>—</td>
</tr>
<tr>
<td>004</td>
<td>Warning: Short circuit in control box, fresh air output</td>
<td>Disconnect connector S1 / B1 at the heater and at the connector B1, PIN 16 check the cable up to the fresh air fan relay for short circuit to negative, if ok -> replace control box, see page 28.</td>
</tr>
<tr>
<td>005</td>
<td>Warning: Short circuit in control box, car alarm output</td>
<td>Disconnect connector S1 / B1 at the heater and at the connector B1, PIN 15 check the cable up to the relay isolating switch or the car alarm input for short circuit to negative, if ok -> replace control box, see page 28.</td>
</tr>
<tr>
<td>009</td>
<td>ADR shutdown</td>
<td>ADR shutdown due to signal change from (+) to (−) at connector S1, PIN 13 (D+) or plus signal at connector S1, PIN 14 (HA+).</td>
</tr>
<tr>
<td>010</td>
<td>Overvoltage cutout</td>
<td>Overvoltage applied to control box for at least 20 seconds without interruption – heater not working. Disconnect connector S1 / B1 at the heater, start the vehicle’s engine, measure the voltage at connector B1 between PIN 1 (cable 2.52 rt) and PIN 10 (cable 2.52 br). AIRTRONIC L 12 volt – voltage >16 volt -> check generator regulator. AIRTRONIC L 24 volt – voltage >32 volt -> check generator regulator.</td>
</tr>
<tr>
<td>011</td>
<td>Undervoltage cutout</td>
<td>Undervoltage applied to control box for at least 20 seconds without interruption – heater not working. Disconnect connector S1 / B1 at the heater, the vehicle’s engine is switched off, measure the voltage at connector B1 between PIN 1 (cable 2.52 rt) and PIN 10 (cable 2.52 br). The measured value and the voltage at the battery should be the same. In case of a voltage drop, check the fuses, the supply cables, the negative connections and the positive support point on the battery for corrosion and correct contact.</td>
</tr>
<tr>
<td>012</td>
<td>Overheating at the overheating sensor (combination sensor)</td>
<td>Temperature of the overheating sensor too high. Check hot air pipes for blockage -> remove blockage. Sum of the component ratings of air-conducting parts is too large -> Check air system, if necessary re-lay – for component ratings, please refer to additional parts catalogue. Check overheating sensor, for diagram and table of values please refer to page 30, if ok -> measure fuel quantity, see page 33.</td>
</tr>
<tr>
<td>013</td>
<td>Overheating at the flame sensor (combination sensor)</td>
<td>Flame sensor signals temperature at heat exchanger is too high. Check hot air pipes for blockage -> remove blockage. Sum of the component ratings of air-conducting parts is too large -> Check air system, if necessary re-lay – for component ratings, please refer to additional parts catalogue. Check flame sensor, if ok -> check overheating sensor, if overheating sensor defective -> replace combination sensor, if overheating sensor ok -> measure fuel quantity, see page 33, for diagram and table of values for flame sensor and overheating sensor please refer to page 30.</td>
</tr>
<tr>
<td>014</td>
<td>Temperature difference between flame sensor and overheating sensor too large</td>
<td>Temperature difference between flame sensor and overheating sensor too large. Check hot air pipes for blockage -> remove blockage. Sum of the component ratings of air-conducting parts is too large -> Check air system, if necessary re-lay – for component ratings, please refer to additional parts catalogue. Check flame sensor, if ok -> check overheating sensor, if overheating sensor defective -> replace combination sensor, if overheating sensor ok -> measure fuel quantity, see page 33, if fuel quantity ok -> replace control box, see page 28. For diagram and table of values for flame sensor and overheating sensor see page 30.</td>
</tr>
<tr>
<td>Fault code Display</td>
<td>Fault description</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Operating lock-out</td>
<td>The fault code 015 is displayed, if the heater was switched back on after the fault code display 017. The hardware threshold value for the overheating sensor has been exceeded → the control box is locked.</td>
<td></td>
</tr>
<tr>
<td>Overheating</td>
<td>The hardware threshold value for the overheating sensor has been exceeded, because the control box failed to recognise the fault code 012 or 013 → the control box is locked. If the heater is switched on again, the fault code 015 is displayed.</td>
<td></td>
</tr>
</tbody>
</table>
| Glow plug – interruption | • Check glow plug is working and for continuity. 12 volt heater – approx. 0.6 Ω ± 0.04 Ω (heat resistance) 24 volt heater – approx. 2 Ω ± 0.2 Ω (heat resistance)
• If the values of the continuity test and functional test are ok –> check the glow plug's lead harness for damage and continuity, if ok –> replace control box, see page 28. |
| Glow plug output (–), overload or earth short circuit | • Check glow plug is working and for continuity. 12 volt heater – approx. 0.6 Ω ± 0.04 Ω (heat resistance) 24 volt heater – approx. 2 Ω ± 0.2 Ω (heat resistance)
• If the values of the continuity test and functional test are ok –> check the glow plug's lead harness for damage and continuity, if ok –> replace control box, see page 28. |
| Glow plug output (+), short circuit after U_B (battery voltage) | • Check glow plug lead harness for correct laying and damage, if ok –> check lead harness for continuity, if ok –> replace control box, see page 28. |
| Diagnostics cable bl/ws – short circuit – after U_B (battery voltage) | This fault code cannot be displayed as the diagnostics cable is probably defective.
• Check diagnostics cable for correct laying and possible damage. |
| EMK blower motor outside the permissible range | Impeller or combustion air blower motor blocked (frozen, soiled, sluggish, lead harness grinds against shaft end …)
• Remove blockage.
• Check wiring for short circuit.
• Speed measurement of the combustion air blower motor:
 – Dismantle combustion air fan, see page 31.
 – Heater 12 V: carry out test with 11.3 volt ±0.1 volt.
 – Heater 24 V: carry out test with 23.6 volt ±0.1 volt.
 Remove the connector from the control box and apply voltage. Apply marking (white paint) to the impeller and measure the speed using a non-contact r.p.m. counter:
If the measured speed in the "high" heating level is outside the range
 – Heater 12 V: n = 4650–7000 rpm,
 – Heater 24 V: n = 4650–6500 rpm,
then replace the combustion air fan, see page 31.
If the measured speed is within the range, then replace the control box, see page 28. |
| Blower motor interruption | • Check that the lead harness of the blower motor has been correctly laid and for damage, if ok –> remove lead harness at control box and check for continuity, if ok –> replace control box, see page 28. |
Fault Code Display

<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Fault Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>032</td>
<td>Blower motor – earth short circuit</td>
<td>Please note!
In the 12 volt heater, carry out the functional check with max. 11.3 volt.
In the 24 volt heater, carry out the functional check with max. 23.6 volt.
The component is destroyed if the voltage values are exceeded. Ensure the power pack has adequate short-circuit resistance – min. 20 A.
• Carry out functional test on the blower motor, to do this remove the connector from the control box.
Apply a voltage of 11.3 v or 23.6 V ±0.1 v to the blower motor and after 40 sec measure the current intensity.
Heater 12 volt: current intensity < 9 A or heater 24 volt: current intensity < 4 A – blower motor ok —> replace control box, see page 28.
Heater 12 volt: current intensity > 9 A or heater 24 volt: current intensity > 4 A —> replace combustion air fan, see page 31.
• Check wiring for short circuit.</td>
</tr>
<tr>
<td>034</td>
<td>Blower motor outlet (+), short circuit after U_{B} (battery voltage)</td>
<td>• Check that the lead harness of the blower motor has been correctly laid and check for damage, if ok —> remove lead harness at control box and check for continuity, if ok —> replace control box, see page 28.</td>
</tr>
<tr>
<td>047</td>
<td>Metering pump short circuit or overload</td>
<td>• Remove connector from the metering pump, if the fault code 048 (interruption) is displayed the metering pump is defective —> replace metering pump.
• If the fault code 047 continues to be displayed, disconnect connector S1 / B1 at the heater, and at the connector B1, PIN 5 check the cable 12 gn / rt up to the metering pump for short circuit to negative (PIN 10), if ok —> replace control box, see page 28.</td>
</tr>
<tr>
<td>048</td>
<td>Metering pump interruption</td>
<td>• Remove connector from the metering pump and measure the resistance value of the metering pump ($12 \text{ V} = 9.5 \Omega \pm 0.5 \Omega / 24 \text{ V} = 36 \Omega \pm 1.8 \Omega$), if resistance value ok —> reconnect cable loom to the metering pump.
• Disconnect connector S1 / B1 at the heater and measure the resistance value between PIN 5 and PIN 10, if ok —> replace control box, see page 28.</td>
</tr>
<tr>
<td>049</td>
<td>Metering pump outlet (+), short circuit after U_{B} (battery voltage)</td>
<td>• Check that the lead harness of the metering pump has been correctly laid and check for damage, if ok —> remove lead harness and check for continuity, if ok —> replace control box, see Page 28.</td>
</tr>
<tr>
<td>050</td>
<td>Too many failed start attempts (operating lock-out)</td>
<td>The control box locks after too many failed start attempts (max. 255 start attempts).
• Unlock the control box by deleting the fault memory using the EDITH customer service program, diagnostic unit or various control units, see page 13 – 19.</td>
</tr>
<tr>
<td>051</td>
<td>Flame detected when switching on</td>
<td>If, after being switched on, the resistance value of the flame sensor is 1274Ω (> 70 °C) the heater’s fan runs for approx. 15 min to cool down, if the resistance does not fall below the aforementioned value within 15 min the heater is switched off.
• Check the flame sensor, for diagram and table of values please refer to page 30, if ok —> replace control box, see page 28.</td>
</tr>
<tr>
<td>052</td>
<td>Safety time exceeded</td>
<td>No flame detected during the start phase.
• Check exhaust and combustion air system.
• Check fuel supply / measure fuel quantity, see page 33.
• Check spark plug (see fault code 020 and 021).
• Check flame sensor, for diagram and table of values please refer to page 30, if ok —> replace control box, see page 28.</td>
</tr>
<tr>
<td>053</td>
<td>Flame cutout in the „POWER“ control stage</td>
<td>The heater has ignited (flame detected) and signals flame cutout during a power stage.
• Check exhaust and combustion air system.
• Check fuel supply / measure fuel quantity, see page 33.
• Check flame sensor, for diagram and table of values please refer to page 30, if ok —> replace control box, see page 28.</td>
</tr>
<tr>
<td>054</td>
<td>„HIGH“ control stage</td>
<td></td>
</tr>
<tr>
<td>055</td>
<td>„MEDIUM“ control stage</td>
<td></td>
</tr>
<tr>
<td>056</td>
<td>„LOW“ control stage</td>
<td></td>
</tr>
<tr>
<td>Fault code</td>
<td>Fault description</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 060 | External room temperature sensor – interruption | • Disconnect the plug-in connection of the external room temperature sensor and measure the resistance value, see page 9 for diagram and values table, if temperature sensor ok -> reconnect plug-in connection.
 • Disconnect connector S1 / B1 at the heater and measure the resistance value in connector housing B1 between PIN 6 and PIN 12. If an interruption exists the ohmic value between PIN 6 and PIN 12 > 3000 Ω. If resistance value ok -> replace control box, see page 28. |
| 061 | External room temperature sensor – short circuit | • Disconnect plug-in connection of the external room temperature sensor, if error code 060 is displayed -> check external room temperature sensor, see page 9 for diagram and values table. If external room temperature sensor ok -> check the connection cables 0.5² gr and 0.5² br/ws for short circuit, if ok -> reconnect plug-in connection.
 • Disconnect connector S1 / B1 at the heater and measure the resistance value in connector housing B1 between PIN 6 and PIN 12. If a short circuit exists the ohmic value between PIN 6 and PIN 12 < 800 Ω. If the error 061 continues to be displayed, -> replace control box, see page 28. |
| 062 | Control unit – interruption | • Remove connector at the control unit and measure the resistance value of the setpoint potentiometer, for connector pins see page 36 ff. If the resistance value is ok -> reconnect connector at the control unit.
 • Disconnect connector S1 / B1 at the heater and measure the resistance value between PIN 6 and PIN 7 in the connector housing B1, if resistance value is ok -> replace control box, see page 28.
 Resistance value in case of interruption between PIN 6 and PIN 7 > 3000 Ω.
 Normal value: 1750 Ω ±30 Ω – 2180 Ω ±80 Ω. |
| 063 | Control unit – short circuit | • If „Ventilate“ switch is installed, disconnect it and check it is working. If ok -> disconnect the connector at the control unit, if error code 062 is displayed, replace control unit.
 • If control unit ok -> check connection cables 0.5² gr / rt and 0.5² br / ws for short circuit, if ok -> reconnect connector at control unit.
 • Disconnect connector S1 / B1 at the heater, if the error 063 continues to be displayed -> replace control box, see Page 28.
 Resistance value in case of short circuit between PIN 6 and PIN 7 < 800 Ω.
 Normal values: 1750 Ω ±30 Ω – 2180 Ω ±80 Ω. |
| 064 | Flame sensor (combination sensor) – interruption | • Dismantle control box and disconnect green connector from control box. Check flame sensor, for diagram and table of values please refer to page 30, if flame sensor ok -> replace control box, see page 28.
 Resistance value in case of interruption > 3000 Ω. |
| 065 | Flame sensor (combination sensor) – short circuit | • Dismantle control box, remove green connector from control box, if error 064 is displayed -> replace combination sensor, see page 29.
 If error 065 continues to be displayed -> replace control box, see page 28.
 Resistance value in case of short circuit < 500 Ω, see also diagram on page 30. |
| 071 | Overheating sensor – interruption | • Dismantle control box, disconnect blue and green connectors from control box. Measure resistance value at the blue connector PIN 1 (cable 0.5² bl) and at the green connector PIN 2 (cable 0.5² br / ws), if ok -> replace control box, see page 28.
 Resistance value in case of interruption >700 kΩ, see also diagram on page 30. |
| 072 | Overheating sensor – short circuit | • Dismantle control box, remove blue connector from control box, if error 071 is displayed -> replace combination sensor, see Page 27.
 If error 072 continues to be displayed -> replace control box, see page 28.
 Resistance value in case of short circuit < 120 Ω, see also diagram on page 30. |
| 074 | Control box defective | • Overheating threshold value is not detected by control box —> replace control box, see page 28. |
Troubleshooting

<table>
<thead>
<tr>
<th>Fault code Display</th>
<th>Fault description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>090</td>
<td>Control box defective (internal fault)</td>
<td>Replace control box, see page 28.</td>
</tr>
<tr>
<td>092</td>
<td>Control box defective (ROM error)</td>
<td>Replace control box, see page 28.</td>
</tr>
<tr>
<td>093</td>
<td>Control box defective</td>
<td>Replace control box, see page 28.</td>
</tr>
<tr>
<td>094</td>
<td>Control box defective (EEPROM error)</td>
<td>Replace control box, see page 28.</td>
</tr>
<tr>
<td>095</td>
<td>Control box defective</td>
<td>Replace control box, see page 28.</td>
</tr>
<tr>
<td>096</td>
<td>Internal temperature sensor defective</td>
<td>Replace control box, see page 28 or use external room temperature sensor.</td>
</tr>
<tr>
<td>097</td>
<td>Control box defective</td>
<td>Replace control box, see page 28.</td>
</tr>
<tr>
<td>098</td>
<td>Control box defective</td>
<td>Replace control box, see page 28.</td>
</tr>
</tbody>
</table>
| 099 | Too many resets in sequence Transistor error in control box | • Voltage short-term < 5 – 6 volt (for 12 volt) or < 7 – 8 volt (for 24 volt).
 • In case of a voltage drop, check the fuses, the supply cables, the negative connections and the positive support point on the battery for corrosion and correct contact.
 • Test control box with testing device, if ok —> check lead harness of the external components has been correctly laid and check for damage, if ok —> check lead harness for continuity, if ok —> replace control box, see page 28. |
The permitted repair work to the heater is described in the “Repair Instructions” chapter. If extensive repairs are necessary, it makes sense to dismantle the heater. The heater is assembled in the reverse order, if applicable not additional instructions.

Please note!
After completing all the work on the heater, you must carry out a functional check.

Always observe the following safety instructions before working on the heater

Danger!
Risk of injury, burns and poisoning!
- Always switch off the heater beforehand and leave it to cool.
- Disconnect the battery.
- The heater must not be operated in closed rooms such as garages or workshops.
 Exception: Exhaust suction available directly at the entry to the exhaust pipe.

Caution!
- The seals of dismantled components must be renewed.
- During repair work, check all components for damage and if necessary replace.
- Check connector contacts, plug-in connections and cables for corrosion and damage and if necessary repair.
- Only ever use Eberspächer spare parts if replacements are necessary.
- After working on the coolant circuit the level of the coolant must be checked and if necessary topped up according to the vehicle manufacturer’s instructions.
 The coolant circuit must then be vented.
- Operation or the after running of the heater may only be stopped in an emergency (see „EMERGENCY OFF“ page 7) by interrupting the battery current (risk of heater overheating).

Special tool
AMP release tool
The AMP release tool is used to unclip push-on sleeves from a connector housing.
This release tool can be ordered directly from Eberspächer GmbH & Co. KG.
- For Micro Timer Order No. 206 00 205
- For Junior Power Timer Order No. 206 00 215

Please note!
5 Repair instructions

Assembly drawing
5 Repair instructions

Parts list

1. Heat exchanger, complete with combustion chamber
2. Combustion chamber cover
3. Seal combustion chamber
4. Combustion air fan
5. Seal
6. Control box
7. Glow plug
8. Connection cable for glow plug
9. Fixing nut M4
10. Lining
11. Intake hood
12. Shell holder
13. Upper jacket shell
14. Grommet (glow plug)
15. Grommet (Rotary valve)
16. Grommet (cable harness)
17. Lower jacket shell
18. Heat shield
19. Outlet hood
20. Combination sensor (flame / overheating sensor)
21. Combination sensor retaining clips
22. Sealing, flange
23. Single-thread screw B 3,5 x 9,5 Z1 DIN 7981 ZN12FF
24. Single-thread screw B 3,5 x 13 Z1
25. Fillister head bolt M5 x 20 Z3 DIN 7895 4.8 ZN8
26. C-Clip single-thread nut
27. DUO-Clip, (retaining clips)
28. Screw M5 x 25, TORX DIN 7500 C
29. Fillister head bolt M5 x 16 Z3 DIN 7895 4.8 ZN8
5 Repair instructions

Repair step 1
Dismantle / assemble glow plug
(Figure 1)

- Remove large angular rubber grommet.
- Unscrew M4 fixing nut of the connection cable and screw out the glow plug using a SW 19 socket spanner.
- Install in the reverse order.
 Glow plug torque 20±2 Nm.
 Connection cable nut torque 1.4 Nm.

Please note!
- With the glow plug dismantled, visually check the lining of the installed glow plug support for dirt. If the lining is highly soiled and its surface closed, renew the lining (see repair step 2).
- Ensure the rubber grommet sits securely and tightly!

Repair step 2
Dismantle / assemble lining
(Figure 2)

- Repair step 1, dismantle / assemble glow plug.
- Use long-nose pliers to pull the lining out of the support from above.
- Clean the support by blowing it with compressed air.
- If necessary, carefully push through a wire.
- Carefully install the new lining. No special tools required.

Repair step 3
Dismantle / assemble control box
(Figure 3)

- Unscrew the 4 fixing screws of the intake hood.
- Remove intake hood.
- Check inserted seal for damage, replace if necessary.
- Unscrew the fixing screw of the control box.
- Remove grommet from the upper jacket shell.
- Press together the retaining clamps.
- Remove the control box from above.
- Remove all connection cables from the control box. (Note the position of the cables). The control box can now be removed.
- Install in the reverse order.
 Torque for intake hood fixing screws 4.0±0.5 Nm.
 Torque for control box fixing screw 1.75±0.25 Nm.

Please note!
When assembling the control box ensure that all the connection cables have been inserted in the control box (non-reversible).
5 Repair instructions

Repair step 4
Dismantle / assembly combination sensor
(overheating / flame sensor)
(Figure 4 – 6)

- Repair step 3, dismantle / assemble control box.
- Unscrew the 4 fixing screws of the outlet hood and remove outlet hood.
- Unscrew the 12 fixing screws of the upper jacket shell and remove the upper jacket shell.
- Use a screwdriver to remove both DUO-clip (retaining clips) at the heat shield and remove the heat shield.
- Pull off the retaining clip of the combination sensor (flame / overheating sensor) from above.
- Install in the reverse order.
 Torque for outlet hood fixing screws 1.45 ±0.5 Nm.
 Torque for upper jacket shell fixing screws 1.45 ±0.5 Nm.

Figure 4

1. Outlet hood fixing screws (B 3.5 x 13)
 (opposite side of unit is mirror image)
2. Fixing screws of upper jacket shell
 (10 No. B 3.5 x 9.5 and 2 No. B 3.5 x 13)

Figure 5

1. DUO-clip (retaining clips)
2. Heat shield

Figure 6

1. Combination sensor retaining clips
2. Combination sensor (flame / overheating sensor)

Circuit diagram for combination sensor
(overheating sensor / flame sensor)

1. NTC 50 KΩ = overheating sensor
2. PT 1000 = flame sensor

- Blue connector
- Green connector
Repair instructions

Check combination sensor

The external temperature sensor must be checked using a digital multimeter. If the resistance value does not match the curve in the diagram, replace the combination sensor.

Please note!

Note the max. temperature of 320° for the test.

Table of overheating sensor values

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Resistance kΩ</th>
<th>min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>–40</td>
<td>1597.00</td>
<td>1913.00</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>458.80</td>
<td>533.40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>59.30</td>
<td>65.84</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>25.02</td>
<td>28.04</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>11.56</td>
<td>13.16</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>5.782</td>
<td>6.678</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3.095</td>
<td>3.623</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.757</td>
<td>2.081</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>1.050</td>
<td>1.256</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>0.6554</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.4253</td>
<td>0.5187</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.2857</td>
<td>0.3513</td>
<td></td>
</tr>
</tbody>
</table>

Table of flame sensor values

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Resistance Ω</th>
<th>min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>–40</td>
<td>825.90</td>
<td>859.60</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>980.00</td>
<td>1020.00</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1132.30</td>
<td>1178.50</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1282.80</td>
<td>1335.10</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1431.50</td>
<td>1489.90</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>1578.30</td>
<td>1642.80</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1723.40</td>
<td>1793.70</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>1866.60</td>
<td>1942.80</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>2008.10</td>
<td>2090.00</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>2147.70</td>
<td>2235.40</td>
<td></td>
</tr>
</tbody>
</table>
Repair instructions

5 Repair instructions

Repair step 5
Dismantle / assemble combustion air fan
(Figure 7 – 11)

- Repair step 3, dismantle / assemble control box.
- Unscrew the 4 fixing screws of the outlet hood and remove outlet hood.
- Unscrew the 12 self-tapping screws of the upper jacket shell and remove the upper jacket shell.
- Remove flange seal.
- Unscrew the 2 self-tapping screws of the lower jacket shell at the shell holder and remove the lower jacket shell.
- Unscrew the 4 screws of the shell holder.
- Unscrew the 5 screws of the combustion air fan.
- Remove the combustion air fan.
- Install in the reverse order.

Torque for outlet hood fixing screws 1.45 ±0.5 Nm.
Torque for upper and lower jacket shell fixing screws 1.45 ±0.5 Nm.
Torque for shell holder fixing screws 2.5 ±0.5 Nm.
Torque for combustion air fan fixing screws 4.0 ±0.5 Nm.

Please note!

Always renew the seal between the combustion air fan and the heat exchanger.

Figure 7
1. Outlet hood fixing screws (B 3.5 x 13)
 (opposite side of unit is mirror image)
2. Fixing screws of upper jacket shell
 (10 No. B 3.5 x 9.5 and 2 No. B 3.5 x 13)

Figure 8
1. Shell holder
2. Flange seal
3. Fixing screws of lower jacket shell
 (2 No. B 3.5 x 13, opposite side of unit is mirror image)

Figure 9
Fan wheel removed for improved view.
1. Fixing screws for shell holder
 (fillister-head screw M5 x 20)
2. Shell holder

Figure 10
Fan wheel removed for improved view.
1. Fastening screws of combustion air fan
 (fillister-head screw M5 x 20)

Figure 11
1. Combustion air fan
2. Heat exchanger
5 Repair instructions

Repair step 6
Replace the combustion chamber cover seal
(Figure 12)

- Repair step 5, dismantle / assemble combustion air fan.
- Unscrew the 4 screws of the combustion chamber cover.
- Remove the combustion chamber cover.
- Remove seal, clean seal surfaces if necessary, install new seal.
- Install in the reverse order.
 Torque of combustion chamber cover fixing screws 3.5±0.5 Nm.

Please note!
Ensure the combustion air duct sits correctly in the combustion chamber cover.
Tighten the fixing screws "crosswise" (i.e. diagonally opposite screws, one after the other).

Figure 12
- Combustion air duct
- Seal
- Combustion chamber cover
- Fixing screws
5 Repair instructions

Check fuel supply

Before measuring the fuel quantity, check the following points in the fuel supply:

- Check the screen in the metering pump.
- Check the laying of the fuel pipes.
- Check fuel pipes for leaks.
- Check and tighten the hose connections.
- Is the fuel removal installed according to the details in the technical description?

Measuring the fuel quantity

1. Preparation

Remove the fuel pipe at the heater and insert a measuring cylinder (size 25 ml).
Switch on the heater, if the fuel is uniformly pumped (begins approx. 60 sec after being switched on), the fuel pipe is full and vented.
Switch off heater and empty measuring cylinder.

Please note!

For precise fuel measurement at least 11 volt and 22 volt or maximum 13 volt and 26 volt should be applied to the control box during the measurement.

2. Measurement

Switch on heater.
The fuel begins to be pumped approx. 60 sec after switching on the heater.
During the measurement, hold the measuring cylinder at the level of the heater.

After approx. 90 sec of the fuel being pumped it is automatically switched off. Switch off heater! *
Read off the quantity of fuel in the measuring cylinder.

If the measured fuel quantity lies outside the values given below, the metering pump must be replaced.

<table>
<thead>
<tr>
<th>Heater</th>
<th>AIRTRONIC L – B5</th>
<th>AIRTRONIC L – D5</th>
</tr>
</thead>
<tbody>
<tr>
<td>min. (ml)</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>max. (ml)</td>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>

* Important, as otherwise fuel will be pumped again after approx. 120 sec.

1 Heater
2 Metering pump
3 Measuring cylinder (size 25 ml)
4 Fuel pipe (disconnect at heater and insert in a measuring cylinder).
Parts list circuit diagrams AIRTRONIC L / AIRTRONIC L – ADR

1.1 Burner motor
1.2 Glow plug
1.5 Overheating and flame sensor

2.1 Control box
2.2 Metering pump
2.7 Main fuse
 12 volt = 25 A
 24 volt = 20 A
2.7.1 Fuse, actuation (5 A)

5.1 Battery
5.2 Battery operating switch
 (operation, e.g. controlled by the ignition lock) d)
5.2.2 Battery isolating switch
 (EMERGENCY OFF function for ADR) d)
5.3 Auxiliary drive (HA+)
5.3.1 Auxiliary drive switch
5.5 Generator terminal (D+)

a) Control units and room temperature sensor connected according to the „control units” circuit diagram.
- ge Switch-on signal (– S+)
- br Power supply, negative (terminal 31)
- grt Temperature (setpoint)
- blws Diagnosis
- gs Power supply, plus – terminal 30
- wsrt Switch off the anti-theft alarm system
 (ADR – feedback signal for timer)
- gr Temperature (actual value)
- brws Ground connection for external temperature
- grrt Temperature – setpoint
- b) Terminal 15 – necessary for connection TP4i
- c) Lighting, terminal 58
- d) Connection, diagnostic unit
- e) Connection, external temperature sensor
- f) Connection, external heating button
- h) Connection, radio remote control TP4i
- j) Connection, temperature sensor (outside temperature)
- l) Connection, change-over switch “heat / ventilate” (option)
 Initial operation: Activate changeover switch “heat / ventilate” then switch on the heater.

z) Lighting, terminal 58

b) Option
- Fresh air fan
- Vehicle fan control

c) ADR
Dangerous goods transporter in the area of the utility vehicle (e.g. tanker)

d) If only one switching element is used for items 5.2.1 and 5.2.2, it is important to ensure that on activating the „open the battery isolating switch” function
 (EMERGENCY OFF function in ADR or similar), the switch always breaks contact immediately (regardless of the heater condition) and all the heater’s circuits are disconnected from the battery.

Please note!
- Insulate unused cable ends.
- Connectors and bush housings are shown from the cable inlet side.

Please note!
- Insulate unused cable ends.
- Connectors and bush housings are shown from the cable inlet side.
Circuit diagram for control units

Parts list page 34
Circuit diagram AIRTRONIC L – ADR – 12 volt / 24 volt
Parts list circuit diagram control unit
EasyStart R+ / R / T

2.15.1 Temperature sensor (room temperature)
 (included in scope of supply for EasyStart R+, optional for EasyStart R / T)
2.15.9 Outside temperature sensor (optional)

3.1.7 “OFF” button
3.1.9 “Heat / ventilate” switch
3.1.11 “Round” control unit
3.1.16 Radio remote control button
3.1.17 “Mini controller” control unit

3.2.15 EasyStart T timer

3.3.9 Radio remote control EasyStart R (stationary unit)
3.3.10 Radio remote control EasyStart R+ (stationary unit)

3.6.1 Lead harness

3.8.3 Antenna

a) Connection of control units at the heater
c) Terminal 58 (lighting)
d) Parking ventilation with vehicle fan (optional)
e) Connection of EasyStart T timer timer
g) Connection “ON / OFF” key
 (optional e.g. Order No.: 22 1000 32 84 00)
h) Connection of “Ventilate” via EasyStart R+
x) ADR jumper
y) Connect and insulate cables

Please note!
• The timer / radio remote control must be connected in accordance with the circuit diagrams (page 36 – 49).
• Note heater type!
• The jumper labelled with y) in the circuit diagram must always be connected.
• Insulate unused cable ends.
• Connectors and bush housings are shown from the cable inlet side.

Assignment of the circuit diagrams to the different AIRTRONIC L and AIRTRONIC L heaters to ADR

The circuit diagrams are assigned according to the installed control box:
The circuit diagrams of the
• EasyStart R+ 25 2361 00 97 01 C
• EasyStart R 25 2361 00 97 02 B
• EasyStart T 25 2361 00 97 03 A
 and 25 2361 00 97 04 A
 apply to the heater
• with 2 diagnostic cables, which are connected to the
 16-pin heater connector S1
 – OEM diagnostics cable
 bl/ws in chamber 3,
 – Universal version of diagnostics cable
 bl/ge in chamber 8.
• with a control box cable loom, which is wound with cable tape.

Cable colours

circuit diagrams
sw = black
ws = white
rt = red
ge = yellow
gn = green
vi = violet
br = brown
g = grey
bl = blue
li = purple
Circuit diagram

Pin assignments

EasyStart R+
Pin assignment at the stationary unit connector

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminal 31 (negative)</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ventilate (switching signal –)</td>
</tr>
<tr>
<td>4</td>
<td>DAT cable</td>
</tr>
<tr>
<td>5</td>
<td>Pushbutton / LED (negative)</td>
</tr>
<tr>
<td>6</td>
<td>Temperature sensor (negative)</td>
</tr>
<tr>
<td>7</td>
<td>Terminal 30 (positive)</td>
</tr>
<tr>
<td>8</td>
<td>S+ (switching on signal)</td>
</tr>
<tr>
<td>9</td>
<td>LED (positive)</td>
</tr>
<tr>
<td>10</td>
<td>Diagnosis cable (K line)</td>
</tr>
<tr>
<td>11</td>
<td>Pushbutton (negative)</td>
</tr>
<tr>
<td>12</td>
<td>Temperature sensor (positive)</td>
</tr>
</tbody>
</table>

EasyStart R
Pin assignment at the stationary unit connector

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminal 31 (negative)</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DAT cable</td>
</tr>
<tr>
<td>5</td>
<td>Pushbutton / LED (negative)</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Terminal 30 (positive)</td>
</tr>
<tr>
<td>8</td>
<td>S+ (switching on signal)</td>
</tr>
<tr>
<td>9</td>
<td>LED (positive)</td>
</tr>
<tr>
<td>10</td>
<td>Diagnosis cable (K line)</td>
</tr>
<tr>
<td>11</td>
<td>Pushbutton (negative)</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

EasyStart T
Pin assignment at the EasyStart T-connector S1

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminal 30 (positive)</td>
</tr>
<tr>
<td>2</td>
<td>S+ (switching on signal)</td>
</tr>
<tr>
<td>3</td>
<td>Terminal 31 (negative)</td>
</tr>
<tr>
<td>4</td>
<td>DAT cable</td>
</tr>
<tr>
<td>5</td>
<td>Diagnosis cable (K line)</td>
</tr>
<tr>
<td>6</td>
<td>Terminal 58</td>
</tr>
<tr>
<td>7</td>
<td>Temperature sensor (positive)</td>
</tr>
<tr>
<td>8</td>
<td>Temperature sensor (negative)</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
This circuit diagram is for heaters with 2 diagnostics cable and whose control box cable loom is wound with cable tape.
Circuit diagram

Circuit diagram control units – EasyStart R

6.5 rt
6.5 ge
6.5 br
6.5 bl/ws
6.5 gr/rt
6.5 br/ws

3.1.17
3.1.16
3.6.1
3.8.3
3.3.9

Parts list page 43
This circuit diagram applies to control boxes with two diagnostic cables, see page 43.
This circuit diagram is for heaters with 2 diagnostics cable and whose control box cable loom is wound with cable tape.
This circuit diagram is for heaters with 2 diagnostics cable and whose control box cable loom is wound with cable tape.

Please note!
Certifications

The high quality of Eberspächer’s products is the key to our success. To guarantee this quality, we have organised all work processes in the company along the lines of quality management (QM). Even so, we still pursue a large number of activities for continuous improvement of product quality in order to keep pace with the similarly constantly growing requirements made by our customers. All the steps necessary for quality assurance are stipulated in international standards. This quality is to be considered in a total sense. It affects products, procedures and customer/supplier relationships. Officially approved public experts assess the system and the corresponding certification company awards a certificate.

Eberspächer has already qualified for the following standards:

Environmental management system in accordance with DIN EN ISO 14001:1996

Disposal

Disposal of materials
Old devices, defect components and packaging material can all be separated and sorted into pure-grade factions so that all parts can be disposed of as required in an environment-friendly manner recycled where applicable. Electric motors, controllers and sensors (e.g. temperature sensors) are deemed to be “electronic scrap”.

Dismantling the heater
The heater is dismantled according to the repair stages in the current troubleshooting/repair instructions.

Packaging
The packaging of the heater can be kept in case it has to be sent back.

EC Declaration of Conformity

With regard to the following products

Heater type AIRTRONIC L

we herewith confirm that it conforms with the prime safety requirements stipulated in the directives of the EU Council for harmonisation of the legal regulations of the member states with regard to electromagnetic compatibility (89/336/EEC). This declaration applies to all heaters manufactured according to the AIRTRONIC L production drawings, which are an integral part of this declaration. The following standards / directives have been used to assess the product with regard to electromagnetic compatibility:

- EN 50081 – 1 Basic form interference emission
- EN 50082 – 1 Basic form of interference immunity
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>AGCO Argentina S. A. Valentin Gomez 577 1706 Haedo RA - Poia. Buenos Aires</td>
<td>Tel. 0054 / 1 - 483 32 01 Fax. 0054 / 1 - 483 32 37</td>
</tr>
<tr>
<td>Champion S. A.</td>
<td>Av. Cordoba 2756 al 58 RA - 1187 Buenos Aires</td>
<td>Tel. 0054 / 1 - 962 16 21 Fax. 0054 / 1 - 962 16 27</td>
</tr>
<tr>
<td>France</td>
<td>Eberspächer S. A. S. Z.A.C. la Clé Saint Pierre 3 rue Blaise Pascal F - 78996 Elancourt Cedex</td>
<td>Tel. 0033 - 1 - 30 68 54 54 Fax. 0033 - 1 - 30 68 54 55</td>
</tr>
<tr>
<td>Greece</td>
<td>MARCONI HELLAS S. A. Soulou 2 - 4 GR - 143 43 N. Halkidona - Athen</td>
<td>Tel. 0030 / 210 - 25 13 500 Fax. 0030 / 210 - 25 28 854</td>
</tr>
<tr>
<td>Latvia</td>
<td>Trans Baltic Trading Corporation Maskavas iela 449 LV - 1063 Riga</td>
<td>Tel. 00371 / 2 - 266 323 Fax. 00371 / 7 - 187 967</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Tradcon Ltd. Paneriu 51 LIT - 2055 Vilnius</td>
<td>Tel. 00370 / 2 - 33 44 30 Fax. 00370 / 2 - 23 35 37</td>
</tr>
<tr>
<td>Republic Moldavia</td>
<td>TC - IUSTINIAN 140 Hinchecest Str., of.9 MD - 2070 Kishinev</td>
<td>Tel. +3732 / 727883, 738710</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Eberca B. V. Marconistraat 2 NL - 3281 NB Numansdrop</td>
<td>Tel. 0031 / 1866 - 2 19 55 Fax. 0031 / 1866 - 2 18 18</td>
</tr>
<tr>
<td>Norway</td>
<td>Eberspächer Norge Trollåsveien 34 N - 1414 Trollåsen</td>
<td>Tel. 00 47 / 66 - 82 30 50 Fax. 00 47 / 66 - 82 30 58</td>
</tr>
<tr>
<td>Austria</td>
<td>Eberspächer Ges.m.b.H. Richard-Strauss-Str. 4 A - 1232 Wien</td>
<td>Tel. 0043 / 615 47 47 0 Fax. 0043 / 615 47 47 42</td>
</tr>
<tr>
<td>Poland</td>
<td>Eberspächer Sp.zo.o Wysogotowo K. Poznania ul. Okreznna 17 PL- 62081 Przemierowo</td>
<td>Tel. 0048 / 61 - 816 18 50 Fax. 0048 / 61 - 816 18 60</td>
</tr>
<tr>
<td>Russia</td>
<td>Company OKMA Kashirskoye shosse 13a RUS - 115230 Moskau</td>
<td>Tel./Fax. 007 / 095 - 111 - 90 95</td>
</tr>
</tbody>
</table>
Service

Representatives abroad

Sweden
Svenska Eberspächer AB
Box 2103
S - 12823 Skarpnäck
Tel. 0046 / 86 83 11 00
Fax. 0046 / 87 24 90 40

Switzerland
Technomag AG
Fischermättelistr. 6
Ch - 3000 Bern - 5
Tel. 0041 - 31 379 81 21
Fax. 0041 - 31 379 82 50

Slovak Republic
Molpir, spol.s r.o.
Hrachova 30
SK-821 05 Bratislava
Tel. 00 421 / 243 19 12 18
Fax. 00 421 / 243 19 12 20

Slovenia
Eberspaecher Gesellschaft m. b. H.
Podrušnica SLO
Celovška cesta 228
1000 Ljubljana
Tel. 00 386 / 1 518 70 52
Fax. 00 386 / 1 518 70 53

Spain – Portugal
Pedro Sanz Clima S.L.
Avda. Ingeniero
Alfonso Peña Boeuf, 10
E - 28022 Madrid
Tel. 00349 / 1 - 748 07 85
Fax. 00349 / 1 - 329 42 31

Czech Republic
Eberspächer Praha s r.o.
AREAL ZÁLESI
Pod Višňovkou 29
CZ - 140 00 Praha 4 – Krě
Tel. 00 420 / 23 40 35 80 0
Fax. 00 420 / 23 40 35 82 0

Ukraine
Geruk K
ul. Vernigory 15
257008 Tscherkassy
Tel. 0038 / 04 72 63 87 47
Fax. 0038 / 04 72 63 87 47

USA
Espar Tech Center
9675 Harrison Road
Suite 102
Romulus, Michigan 48 174
Tel. 001 / 734 - 947 - 947 - 39 00
Fax. 001 / 734 - 947 - 72 98

Belarus
ZAO Belvneshinvest
ul. Wostochnaja 129 / 102 - 104
BY. 220 113 Minsk
Tel. 00375 / 172 317 294
Fax. 00375 / 172 317 481

Turkey
OSCA Otomotiv Ltd.
Org. Sanayi Sitesi Dolapdere Koop.
3 Ada No: 2
TR - Iketli / Istanbul
Tel. +90 212 - 549 86 31
Fax. +90 212 - 549 33 47
Index

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident prevention</td>
<td>4</td>
</tr>
<tr>
<td>Adapter cable</td>
<td>11, 12, 16</td>
</tr>
<tr>
<td>ADR</td>
<td>7, 34, 41 – 43, 49, 54</td>
</tr>
<tr>
<td>Assembly drawing</td>
<td>24</td>
</tr>
<tr>
<td>ADR</td>
<td>7, 34, 41 – 43, 49, 54</td>
</tr>
<tr>
<td>CANCEL THE CONTROL BOX LOCK</td>
<td>13, 15, 16, 17</td>
</tr>
<tr>
<td>CERTIFICATIONS</td>
<td>41</td>
</tr>
<tr>
<td>CHECK TEMPERATURE SENSOR</td>
<td>8</td>
</tr>
<tr>
<td>CIRCUIT DIAGRAM</td>
<td>32 - 40</td>
</tr>
<tr>
<td>COMBINATION SENSOR</td>
<td>27</td>
</tr>
<tr>
<td>COMBUSTION AIR FAN</td>
<td>29</td>
</tr>
<tr>
<td>COMBUSTION CHAMBER COVER</td>
<td>30</td>
</tr>
<tr>
<td>CONTROL AND SAFETY DEVICES</td>
<td>7</td>
</tr>
<tr>
<td>CONTROL BOX</td>
<td>26</td>
</tr>
<tr>
<td>CUSTOMER SERVICE PROGRAM EDITH</td>
<td>7, 11, 15, 16</td>
</tr>
<tr>
<td>CUSTOMER SERVICE PROGRAM KD2000</td>
<td>7</td>
</tr>
<tr>
<td>CUTAWAY VIEW</td>
<td>5</td>
</tr>
<tr>
<td>D DIAGNOSTIC UNIT</td>
<td>11, 12</td>
</tr>
<tr>
<td>DISPOSAL</td>
<td>41</td>
</tr>
<tr>
<td>E EASYSTART R</td>
<td>43, 44, 46, 47</td>
</tr>
<tr>
<td>EASYSTART R+</td>
<td>11, 19, 45 – 45</td>
</tr>
<tr>
<td>EASYSTART T</td>
<td>11, 43, 44, 48, 49</td>
</tr>
<tr>
<td>EMERGENCY STOP</td>
<td>7</td>
</tr>
<tr>
<td>EXHAUST EMISSION SPECIFICATION</td>
<td>9</td>
</tr>
<tr>
<td>EXPLOSION DRAWING</td>
<td>24</td>
</tr>
<tr>
<td>F FAN SPEED</td>
<td>19</td>
</tr>
<tr>
<td>FAULT CODE</td>
<td>18 - 22</td>
</tr>
<tr>
<td>FAULT DESCRIPTION</td>
<td>18 - 22</td>
</tr>
<tr>
<td>FAULT DIAGNOSIS</td>
<td>11</td>
</tr>
<tr>
<td>FAULTS</td>
<td>9</td>
</tr>
<tr>
<td>FLAME SENSOR</td>
<td>27</td>
</tr>
<tr>
<td>FUEL METERING PUMP</td>
<td>31</td>
</tr>
<tr>
<td>FUEL SUPPLY</td>
<td>31</td>
</tr>
<tr>
<td>FUNCTION</td>
<td>5 - 7</td>
</tr>
<tr>
<td>FUNCTIONAL DESCRIPTION</td>
<td>6</td>
</tr>
<tr>
<td>G GLOW PLUG</td>
<td>26</td>
</tr>
<tr>
<td>GUARANTEE</td>
<td>4</td>
</tr>
<tr>
<td>H HEATING MODE</td>
<td>6</td>
</tr>
<tr>
<td>I INITIAL COMMISSIONING</td>
<td>4</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>ISO ADAPTER</td>
<td>11, 15</td>
</tr>
<tr>
<td>L LIABILITY CLAIM</td>
<td>4</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>45</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>2, 3</td>
</tr>
<tr>
<td>M METERING PUMP</td>
<td>31</td>
</tr>
<tr>
<td>MODULE TIMER</td>
<td>11, 14</td>
</tr>
<tr>
<td>O OVERHEATING SENSOR</td>
<td>27</td>
</tr>
<tr>
<td>P PARTS LIST</td>
<td>25</td>
</tr>
<tr>
<td>PIN ASSIGNMENTS</td>
<td>44</td>
</tr>
<tr>
<td>PICTURE SYMBOLS</td>
<td>4</td>
</tr>
<tr>
<td>Q QUALITY MANAGEMENT</td>
<td>41</td>
</tr>
<tr>
<td>R REGULATIONS</td>
<td>4</td>
</tr>
<tr>
<td>REPAIR INSTRUCTIONS</td>
<td>23 - 31</td>
</tr>
<tr>
<td>REPRESENTATIVES ABROAD</td>
<td>42, 43</td>
</tr>
<tr>
<td>REPRESENTATIVES</td>
<td>42, 43</td>
</tr>
<tr>
<td>RESISTANCE VALUES</td>
<td>9</td>
</tr>
<tr>
<td>S SAFETY DEVICES</td>
<td>7</td>
</tr>
<tr>
<td>SAFETY INFORMATION</td>
<td>4</td>
</tr>
<tr>
<td>SERVICE</td>
<td>41 - 43</td>
</tr>
<tr>
<td>STATUTORY REGULATIONS</td>
<td>4</td>
</tr>
<tr>
<td>SWITCHING VALUE OVERHEATING SENSOR</td>
<td>9</td>
</tr>
<tr>
<td>T TECHNICAL DATA</td>
<td>8</td>
</tr>
<tr>
<td>TESTING EQUIPMENT</td>
<td>11</td>
</tr>
<tr>
<td>TEST SPEED FOR THE BLOWER</td>
<td>9</td>
</tr>
<tr>
<td>TROUBLESHOOTING</td>
<td>9 - 22</td>
</tr>
<tr>
<td>V VENTILATING MODE</td>
<td>6</td>
</tr>
</tbody>
</table>
List of abbreviations

ADR
European agreement about the international transport of dangerous goods on the road.

EC type-approval
Permit awarded by the Federal Vehicle Office for the production of a heater for installation in motorised vehicles.

EMC Directive
Electromagnetic compatibility.

JE-partner
J. Eberspächer partner.