FORWARD

Congratulations on the acquisition of your new Catalina 30. All Catalina yachts are designed and built with care using quality materials to assure you years of sailing enjoyment with a minimum of upkeep and maintenance.

Before attempting maintenance or operation of your Catalina 30, please read the Catalina Yachts Limited Warranty booklet and fill out the enclosed warranty registration card.

The registration card enables Catalina to inform you of developments and modifications to enhance the performance or comfort of your yacht. It is also important to be able to contact owners to comply with Coast Guard notification requirements.

The launching and rigging of the Catalina 30 should be handled by experienced boat yard personnel under the direction of your authorized dealer. After the boat is launched, the dealer will complete the last stages of rigging and mast tuning.

The index page lists the contents of this manual. Warranties and information regarding installed optional equipment have been included when available and applicable.

Maintaining your yacht properly can become a satisfying part of your sailing activities. A regular inspection is the best preventive maintenance. It will help keep your boat safe and in good condition while in use, and insure peace of mind when the boat is left unattended.

Take good care of your boat and take the time to learn and practice good seamanship.
1.0 INTRODUCTION

1.1 REFERENCE DATA SHFFT

2.0 COMMISSIONING CHECK LIST

2.1 PRE-LAUNCH PROCEDURE
2.2 IN THE WATER CHECK LIST
 2.2.1 ELECTRICAL
 2.2.2 PLUMBING
 2.2.3 RIGGING AND HARDWARE
 2.2.4 ENGINE

2.3 SAILING CHECK LIST
 2.3.1 FINAL CHECK

3.0 MAINTENANCE GUIDE

3.1 PRE-USE MAINTENANCE
3.2 MONTHLY MAINTENANCE
3.3 SEASONAL MAINTENANCE
3.4 FIBERGLASS MAINTENANCE AND REPAIR
 3.4.1 FIBERGLASS TOUCH UP AND REPAIR
3.5 BOTTOM PAINTING AND PREPARATION
3.6 TEAK MAINTENANCE
3.7 SPAR AND RIGGING MAINTENANCE
3.8 SAIL MAINTENANCE
3.9 INTERIOR CUSHION FABRIC COVER CLEANING

4.0 YACHT SYSTEMS, DESCRIPTIONS AND ILLUSTRATIONS

4.1 RIGGING

4.1.1 STEPPING THE MAST
4.1.2 TUNING THE MAST
4.1.3 RIGGING WIRE CHECK LIST
4.1.4 SAIL PLAN
4.1.5 SPREADER ASSEMBLY, ALUMINUM
4.1.6 INTERNAL HALYARD MAST HEAD ASSEMBLY
4.1.7 MAIN SAIL REEFING
4.1.8 MAIN SAIL REEFING ASSEMBLY
4.1.9 INTERNAL OUT HAUL ASSEMBLY
4.1.10 MAINSHEET/TRAVERLER ASSEMBLY
4.1.11 HALYARD ARRANGEMENT
4.1.12 BOOM VANG AND GOOSENECK ARRANGEMENT
4.1.13 BACK STAY ADJUSTER SYSTEM
4.1.14 TOPPING LIFT ASSEMBLY

4.2 ELECTRICAL

4.2.1 BATTERIES
4.2.2 MAIN BATTERY SWITCH
4.2.3 MAIN BATTERY SWITCH SCHEMATIC
4.2.4 110 VOLT SYSTEM
4.2.5 110 VOLT SCHEMATIC / 12 VOLT SCHEMATIC
4.3 PLUMBING
4.3.1 HOT AND COLD PRESSURE SYSTEM PLUMBING SCHEMATIC
4.3.2 MANUAL BILGE PUMP
4.3.3 SEACOCKS
4.3.4 THROUGH HULL LOCATIONS
4.3.5 MARINE TOILET OPERATIONS
4.3.6 MACERATOR PUMP AND TROUBLE SHOOTING
4.3.7 HOLDING TANK AND MACERATOR SCHEMATIC

4.4 AUXILIARY POWER
4.4.1 GENERAL ENGINE INFORMATION
4.4.2 SHAFT PACKING GLAND (STUFFING BOX)
4.4.3 SHAFT ALIGNMENT
4.4.4 SHAFT ALIGNMENT ILLUSTRATION
4.4.5 FUELING
4.4.6 FUEL SANITATION
4.4.7 FUEL SYSTEM ILLUSTRATION
4.4.8 EXHAUST SYSTEM MAINTENANCE
4.4.9 ENGINE EXHAUST SYSTEM ILLUSTRATION

4.5 STEERING
4.5.1 EMERGENCY TILLER
4.5.2 EMERGENCY TILLER ILLUSTRATION

4.6 DECK HARDWARE
4.6.1 DECK HARDWARE ARRANGEMENT PLAN

4.7 ACCOMODATION
4.7.1 CABIN ARRANGEMENT
4.7.2 GALLEY STOVE

5.0 DECOMMISSIONING
5.1 RECOMMENDED LIFTING PROCEDURE
5.2 WINTERIZING YOUR ENGINE

6.0 OWNER-USER RESPONSIBILITY
6.1 GENERAL SAFETY TIPS
6.2 REQUIRED SAFETY EQUIPMENT
6.3 SUGGESTED SAFETY EQUIPMENT
6.4 SAFETY PACKAGE, FACTORY OPTION
6.5 ANCHORS, ANCHORING AND MOORING
6.6 LIGHTNING PRECAUTIONS
6.7 FEDERAL REQUIREMENTS FOR RECREATIONAL BOATS
USCG BOOKLET (GPO: 19840-418-177)
1. PEDESTAL STEERING
2. HEADSAIL REEFING
3. PRESSURE WATER PUMP
4. MARINE TOILET
5. COMPASS
6. BATTERIES
7. WINCH MANUALS
8. ENGINE MANUALS
9. KNOT METER
10. GALLEY STOVE
11. FUEL FILTERS
12. BILGE PUMP
13. GALLEY FOOT PUMP
14. RUNNING LIGHTS

NOTE: SOME MANUFACTURERS ENCLOSURES MAY NOT BE INCLUDED WITH ALL MANUALS, DEPENDING UPON OPTIONAL EQUIPMENT SELECTION.
<table>
<thead>
<tr>
<th>Registration or Documentation No.</th>
<th>Port of Call</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5787</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of Commissioning</th>
<th>Hull Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner's Name</th>
<th>Owner's Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length, Overall</th>
<th>Draft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Rig</td>
<td>29'11"</td>
</tr>
<tr>
<td>Tall Rig with Bow Sprit</td>
<td>31'7"</td>
</tr>
<tr>
<td>Mast Height Above Owl</td>
<td>45'5"</td>
</tr>
<tr>
<td>Standard Rig</td>
<td>47'4"</td>
</tr>
<tr>
<td>Tall Rig</td>
<td>47'4"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fresh Water Capacity</th>
<th>Ballast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Tank</td>
<td>18 GAL</td>
</tr>
<tr>
<td>Forward Tank</td>
<td>25 GAL</td>
</tr>
<tr>
<td>Hot Water Heater</td>
<td>6 GAL</td>
</tr>
<tr>
<td>Total</td>
<td>42 GAL</td>
</tr>
<tr>
<td>Waste Tank Capacity</td>
<td>17 GAL</td>
</tr>
<tr>
<td>Height on Cradle</td>
<td>11'6"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beam</th>
<th>Engine Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>15'10"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel Capacity</th>
<th>Sail Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 GAL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length, Waterline</th>
<th>Radio Telephone Call Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>25'0"</td>
<td></td>
</tr>
</tbody>
</table>
2.0 COMMISSIONING CHECK LIST

2.1 PRE-LAUNCH CHECK:

1. _____ SHAFT TURNS FREELY BY HAND, ZINC COLLAR INSTALLED IF REQUIRED
2. _____ CHECK INTAKE HOSES AND CLAMPS
3. _____ CHECK ALL THROUGH HULL FITTINGS
4. _____ DRAIN PLUGS TIGHT, ENGINE, MUFFLER, AND EXHAUST LINE
5. _____ BOTTOM CLEAN, PAINT OK
6. _____ HULL SIDES CLEAN, GEL COAT OK
7. _____ DECKS CLEAN
8. _____ TEAK CLEANED AND OILED
9. _____ INTERIOR FINISHED, OILED, CLEAN
10. _____ CUSHIONS, CARPETING, CURTAINS, CLEAN AND IN PLACE
11. _____ TABLE CONVERTS TO BERTH OK, DINETTE, TRADITIONAL TABLE STORED OK
12. _____ HATCH LIDS PRESENT AND FIT OK
13. _____ LIFELINES AND PULPITS RIGGED AND OK
14. _____ SPREADERS TAPED AND DRILLED AT BASE END, UPPER SHROUD WIRED TO TIP END AND TAPED
15. _____ STANDING RIGGING PINNED TO MAST
16. _____ RIGGING LENGTHS VERIFIED WITH CHECK LIST IN KIT
17. _____ MAST AND BOOM INSPECTED: COTTER PINS, SHEAVES, TANGS, SPREADERS OK
18. _____ MAST LIGHTS CHECKED BEFORE MAST STEPPED
19. _____ CHECK OVER HEAD FOR ELECTRICAL WIRES WHICH MAY INTERFERE WITH THE SPACE REQUIRED TO RAISE THE MAST TO ITS FULL UPRIGHT POSITION. IF THERE ARE WIRES OF ANY KIND ANYWHERE NEAR THE BOAT, DO NOT RAISE THE MAST. MOVE BOAT TO ANOTHER LOCATION AWAY FROM ANY WIRES. CONTACT WITH WIRES CAN BE FATAL.

2.1 IN WATER CHECK:

2.2.1 ELECTRICAL:

1. _____ ELECTRICAL EQUIPMENT OPERATIONAL:
 __ RUNNING __ CABIN __ BOW __ ANCHOR __ SPREADERS __ PRESSURE __ WATER __ MACERATOR __ PUMP __ MASTR
2. _____ SHORE POWER OUTLET OK
3. _____ CHECK BATTERY SWITCH #1 #2 OK
4. _____ CHECK BATTERY FLUID LEVEL
5. _____ CHECK BATTERY TERMINAL FOR TIGHTNESS

2.2.2 PLUMBING:

1. _____ NO LEAKS AT THRU HULL FITTINGS WITH SEACOCKS OPEN
2. _____ FILL ALL WATER TANKS
3. _____ CHECK ALL WATER TANKS
4. _____ TEST ALL FAUCETS AND FOOT PUMPS FOR LEAKS
5. _____ CHECK FOR LEAKS AT SINK DRAIN, SINK DRAINS OK
6. _____ PUT WATER IN ICE BOX AND CHECK FOR PROPER DRAINAGE
7. _____ CHECK BILGE PUMP OPERATION, HANDLE PRESENT
8. _____ CHECK HEAD BY FLUSHING AND PUMPING
9. _____ CHECK SHOWER SUMP DRAIN LINE
10. _____ CHECK HOLDING TANK, PUMP VENT AND FITTING
2.0 COMMISSIONING CHECK LIST (CONT'D):

11. CHECK HEAD AND PUMP HANDLE FOR LEAKS
12. MAIN HATCH NO LEAKS, SLIDES FREELY, HATCH BOARD FITS OK
13. CABIN WINDOWS HOSE TESTED FOR LEAKS
14. ANCHOR LOCKER DRAIN OK, NO LEAKS AT BOW LIGHTS
15. STOVE OPERATES OK: CHECKS, TANK, FUEL LINE, BURNER, AND OVEN

2.2.3 RIGGING AND HARDWARE:
1. MAST STEPPED
2. PIN, TAPE, AND TUNE STANDING RIGGING
3. BACKSTAY ADJUSTER, WHISKER POLE, SPINNAKER GEARS, BOOM VANG
4. BLOCKS, CARS, CLEATS RIGGED OK
5. TEST ALL WINCHES, WINCH HANDLES PRESENT

2.2.4 ENGINE:
1. NO LEAKS: SHAFT, RUDDER, STUFFING BOX, OR SHAFT LOG
2. SHAFT, DIMPLED FOR SET BOLTS AT COUPLING; BOLTS WIRED AND COUPLING SECURED
3. WITH FUEL TANKS FULL, NO LEAKS AT FILL PIPES, OVERFLOW VENT, OR ANY FUEL LINE CONNECTIONS
4. WITH COUPLING DISCONNECTED, ENGINE AND SHAFT ALIGNMENT OK—RECHECK ALIGNMENT AFTER RIGGING TUNED
5. TRANSMISSION OIL LEVEL OK
6. CRANK CASE OIL LEVEL OK
7. FUEL VALVES OPEN, BLEED AND PRIME LINES IF DIESEL ENGINE
8. CHECK THAT SHAFT IS COUPLED AND AlIGNED TO .003 MAXIMUM TOLERANCE
9. ENGINE WIRE OK, CONNECTIONS TIGHT
10. THROTTLE CONTROL CABLE TRAVEL AND BRACKETS OK
11. CLUTCH CONTROL CABLE TRAVEL AND BRACKETS OK
12. START ENGINE
13. EXHAUST WATER FLOW OK
14. NO LEAKS IN FUEL LINES AT FITTING, FUEL FILTER, FUEL PUMP, OR CARBURETOR
15. NO ENGINE OR OIL LEAKS
16. IDLING SPEED SET R.P.M.'S
17. CHECK CHOKE OPERATION, CHECK SHUTOFF CABLE FOR DIESEL ENGINE
18. CHECK FORWARD AND REVERSE SHIFTING
19. CHECK ENGINE INSTRUMENTS FOR OPERATION, TACHOMETER FOR CALIBRATION
20. RUN IN GEAR FOR TEN (10) MINUTES
21. RECHECK PACKING GLAND AFTER ENGINE STOPS
22. BILGE BLOWER AND VENT SYSTEM OK
2.0 COMMISSIONING CHECK LIST (CONTD):

2.3 SAILING CHECK LIST:

1. ___ TILLER MOVES FREELY, 45 DEGREES EACH SIDE OF CENTER LINE, MIN.
2. ___ PEDESTAL STEERING OPERATION OK, COMPASS OK
3. ___ SAILS AND HALYARDS OK
4. ___ BOAT PERFORMANCE UNDER POWER AND SAIL OK

2.3.1 FINAL CHECK:
1. ___ ALL ACCESSORY EQUIPMENT OPERATES OK
2. ___ ALL BOAT, ENGINE, AND ACCESSORY LITERATURE, AND/OR MANUALS ABOARD
3. ___ WARRANTY CARDS COMPLETED AND MAILED, OWNER REGISTRATION CARD ATTACHED, OWNER INFORMED OF WARRANTY RESPONSIBILITIES
4. ___ ENGINE WARRANTY CARD COMPLETED AND MAILED
3.0 MAINTENANCE GUIDE

3.1 PRE-USE MAINTENANCE:

RIGGING:
1. INSPECT TURNBUCKLE—TIGHTEN IF NECESSARY.
2. INSPECT CLEVIS PINS AND COTTER PINS.
3. VISUALLY INSPECT SPREADER TIPS AND OTHER AREAS WHERE SAILS MAY CHAFE DURING SAILING, REPLACE TAPE AS NECESSARY.
4. Halyards FREE AND NOT TANGLED.
5. INSPECT MAST HARDWARE ATTACHMENT BOLTS, TIGHTEN AS REQUIRED.

HULL AND DECK INSPECTION:
1. TILLER MOVE FREELY, PEDESTAL STEERING OK, RUDDER POST PACKING GLAND.
2. BILGES AND COMPARTMENTS ARE DRY.
3. THRU HULL VALVES, HOSES, AND CLAMPS, OK.
4. CHECK RUNNING LIGHTS.

ENGINE:
1. CHECK ENGINE OIL AND FUEL LEVELS.
2. PACKING GLAND OK, COOLING WATER INTAKE VALVE OPENS AND CLOSES OK.
3. THROTTLE SHIFT OK.
4. BLOWER SYSTEM.
5. CHECK BILGE AREAS FOR FUEL BEFORE STARTING ENGINE.

3.2 MONTHLY MAINTENANCE:

RIGGING:
1. INSPECT CHAIN PLATES, FASTENINGS, AND BOLTS, TIGHTEN AS NECESSARY.
2. INSPECT BLOCKS, SHACKLES, COTTER PINS.
3. CHECK RIGGING TUNE, TIGHTEN WIRE CONDITION.
4. CHECK TURNBUCKLES AND LOCKING PINS.

HULL AND DECK:
1. CHECK COCKPIT DRAINS, CLEAR DEBRIS.
2. INSPECT HULL VALVES, OPEN AND CLOSE FREELY.
3. WINCHES TURN FREELY, LUBRICATE AS PER MANUFACTURE'S RECOMMENDATIONS.
4. CLEAN AND OIL EXTERIOR TEAK AS NECESSARY.
5. CLEAN AND WAX GEL COAT SURFACES AS NECESSARY.

ENGINE:
1. CHECK OIL AND FLUID LEVELS.
2. BATTERY: CHECK FLUID LEVELS AND TIE DOWNS.
3. TIGHTEN ALL BOLTS AND NUTS TO PROPER TORQUE.
4. CHECK FUEL TANK FITTINGS, AND HOSE CLAMPS.
5. DISASSEMBLE AND INSPECT COOLING SYSTEM anti-syphon (LOCATED UNDER GALLEY COUNTER NEAR SINK).
3.0 MAINTENANCE GUIDE (CONT'D)

3.3 SEASONAL MAINTENANCE:

RIGGING:
1. MAST HEAD PINS AND SHEAVES TURN FREELY.
2. HALYARDS AND NICROPRESS FITTINGS ARE IN GOOD CONDITION AND ARE TAPED.
3. SPREADERS TIPS AND BASES, AND MAST FITTINGS.
4. ALL SHROUD TERMINATIONS AND SWEDGED FITTINGS.
5. GOOSENECK ASSEMBLY AND BOOM ASSEMBLY.
6. MAST, BOOM, AND SPREADERS CLEANED AND WAXED.

HULL, DECK, AND CABIN:
1. ALL CHAINPLATES AND THRU BOLTS TIGHT.
2. DISASSEMBLE WINCHES AND LUBRICATE BEARINGS AND PAWLS.
3. ELECTRICAL SYSTEM AND BATTERY TIE DOWNS, COAT TO PREVENT CORROSION, AND TERMINAL CONNECTORS.
4. DRAIN AND FLUSH FRESH WATER SYSTEM.
5. CHECK HEAD AND ANTI-SIPHON VALVE IN TOILET.
6. HATCH GASKETS, AND HOLD DOWN DOGS.
7. BOTTOM, KEEL, AND RUDDER CONDITION.
8. LIFELINES, STANCHIONS, AND PELICAN HOOKS.

ENGINE:
1. CHECK SHAFT ALIGNMENT, REPACK STUFFING BOX IF NECESSARY.
2. CLEAN MOTOR THOROUGHLY.
3. INSPECT FUEL SYSTEM.
4. TUNE ENGINE AS PER MANUFACTURERS RECOMMENDATIONS.
FIBERGLASS MAINTENANCE AND REPAIR:

ONE OF THE MAJOR BENEFITS OF A FIBERGLASS BOAT IS THE ELIMINATION OF MAINTENANCE CHORES REQUIRED BY OTHER MATERIALS. YOU HAVE ONLY THREE RELATIVELY EASY MAINTENANCE RULES TO FOLLOW TO KEEP YOUR BOAT LOOKING LIKE NEW.

1. EACH YEAR CLEAN, BUFF, AND WAX THE EXTERIOR OF THE BOAT.

2. TOUCH UP AND PATCH SCRATCHES, SCARS, AND SMALL BREAKS.

3. REPAIR ANY MAJOR BREAKS AS SOON AS POSSIBLE TO AVOID ADDITIONAL DAMAGE TO THE HULL OR DECKS.

MOST FIBERGLASS BOATS ARE MANUFACTURED OF TWO "LAYERS" OF MATERIAL, PERMANENTLY BONDED TOGETHER BY A CHEMICAL REACTION. THE OUTSIDE SURFACE IS FORMED BY A COLORED GEL COAT. THIS IS A SPECIAL RESIN MATERIAL CONTAINING CONCENTRATED COLOR. IT PROVIDES A SMOOTH, FINISHED SURFACE.

THE SECOND "LAYER" IS MADE UP OF POLYESTER RESIN REINFORCED WITH LAMINATIONS OF FIBERGLASS MAT, CLOTH, OR WOVEN ROVING. BOTH THE GEL COAT AND POLYESTER RESIN ARE "CURED" BY A CHEMICAL CATALYST WHICH CAUSES THEM TO FORM A HARD, STRONG MASS THAT IS HIGHLY RESISTANT TO IMPACT AND DAMAGE.

AFTER SAILING, A GOOD HOSING DOWN WITH FRESH WATER AND A MILD DETERGENT WILL KEEP YOUR BOAT SPARKLING FRESH AND CLEAN. THE NON-SKID SURFACES MAY NEED TO BE SCRUBBED WITH DETERGENT. SMOOTH GLASS AREAS MAY BE POLISHED WITH LIQUID WAX OR ANY GOOD FIBERGLASS WAX TO ADD EXTRA LUSTRE. IN THE CASE OF OLDER BOATS, WHERE SOME FADING OF THE GEL COAT HAS OCCURRED, THE SURFACE SHOULD BE BUFFED WITH POLISHING COMPOUND AND THEN WAX FINISHED.

WHEN BUFFING THE BOAT TO RESTORE ITS FINISH, CARE SHOULD BE TAKEN NOT TO CUT THROUGH THE GEL COAT SURFACE. THIS IS ESPECIALLY TRUE ON CORNERS AND EDGES OF THE HULL. A POWER BUFFER MAY BE USED OR THE WORK DONE BY HAND, USING A LIGHTLY ABRASIVE RUBBING COMPOUND SUCH AS MIRRO GLAZE NO. 1 FOR POWER BUFFERS, OR DUPONT NO. 7 FOR HAND BUFFING. ANY HIGH QUALITY PASTE WAX MAY BE USED AFTER DUFFING.
3.4.1 FIBERGLASS TOUCH UP AND REPAIR

Scratches, Shallow Nicks, Gouges, Small Holes (do not penetrate through the hull)

These repairs are easy because only the surface of the boat is damaged. They fall into two categories: (1) damage to the gel coat colored outer surface, and (2) holes or gouges that are deep enough to penetrate the fiberglass reinforced area of the boat. The repair operations are similar.

For damage to the gel coat surface, you will need a small can of gel coat, of the same color as your boat, and a small amount of catalyst. For deeper holes or gouges (1/8" or more) you will also need some short strands of fiberglass which can be trimmed from fiberglass mat or purchased in the form of "milled fibers." These materials can be purchased from your dealer.

(1) Be sure the area around the damage is wiped clean and dry. Remove any wax or oil from the inside of the hole or scratch.

(2) Using a power drill with a burr attachment, roughen the bottom and sides of the damaged area and feather the edge surrounding the scratch or gouge. Do not "undercut" this edge. (If the scratch or hole is shallow and penetrates only the color gel coat, skip to step No. 8.)

(3) Into a jar lid or on a piece of cardboard, pour a small amount of gel coat...just enough to fill the area being worked on. Mix an equal amount of milled fibers with this gel coat, using a putty knife or small flat stick. Then add two drops of catalyst, using an eyedropper for accurate measurement. For a half-dollar-size pile of gel coat, this amount of catalyst will give you 15 to 20 minutes working time before it begins to "gel." Carefully cut the catalyst into the gel coat and mix thoroughly.

(4) Work this mixture of gel coat, fibers and catalyst into the damaged area, using the sharp point of a putty knife or knife blade to press it into the bottom of the hole and to puncture any air bubbles which may occur. Fill the scratch or hole above the surrounding undamaged area about 1/16".

(5) Lay a piece of cellophane or waxed paper over the repair to cut off the air and start the "cure."
After 10 or 15 minutes the patch will be partially cured. When it feels rubbery to the touch, remove the cellophane and trim flush with the surface, using a sharp razor blade or knife. Replace the cellophane and allow to cure completely (30 minutes to an hour). The patch will shrink slightly below the surface as it cures.

Again use the electric drill with Burr attachment to rough up the bottom and edges of the hole. Feather hole into surrounding gel coat, do not undercut.

Pour out a small amount of gel coat into a jar lid or on cardboard. Add a drop or two of catalyst and mix thoroughly, using a cutting motion rather than stirring. Use no fibers.

Using your finger tip or the tip of a putty knife, fill the hole about \(\frac{1}{16} \)" above the surrounding surface with the gel coat mixture.

Lay a piece of cellophane over the patch to start the curing process. Repeat step 6, trimming patch when partially cured.

Immediately after trimming, place another small amount of gel coat on one edge of the patch and cover with cellophane. Then, using a rubber squeegee or back of the razor blade, squeegee level with area surrounding the patch. Leave cellophane on patch for 1 to 2 hours, or overnight, for a complete cure.

Using a sanding block, sand the patched area with 600 grit WET sandpaper. Finish by rubbing or buffing with a fine rubbing compound. Some slight color difference may be observed. Weathering will blend touch-up, if properly applied.
TIN-FREE ANTIFOULANT
CUSTOMER INFORMATION
CUKOTE

One of the first additives by boat owners to conventional bottom paint was the use of red pepper. The notion was to give barnacles a hot foot, encouraging them to debark instantly if not sooner, for some other hull where the diet was more bland. One thing's certain: it demonstrates the lengths to which people will go to keep their boat bottoms clean. Vessels kept in coastal waters know all about the fouling problems that grow below the waterline, decreasing vessels speed, boosting fuel bills, and creating no end of trouble and expense. The U.S. Navy, in the days before W.W. II, figured a 3% loss of speed per month.

Mankind has been playing around with waxes, antibiotics, biodegradable paints and what not to discourage marine growth for a long time. For a solid century copper reigned supreme. In time it found competition from mercury and DDT now banned because of the pollution it caused in harbors. A decade ago a variety of tin compounds were introduced: Tri-butyltin-oxide, -adapate, -flouride, -methacrylate, and more. Now EPA proposes to ban the use of TBT on pleasure crafts under 65' not being aluminum. Legislation has already been enacted in some states in order to comply with federal laws forthcoming.

Sea Hawk now offers you, the consumer, Cukote Antifouling. A scientifically proven tin-free paint that was proven in the lab as well as in the field effective. Cukote's qualities of being 100% tin-free, ablative, and tested after multiple seasons to be substantially free from fouling in Florida.
Once a hull has been properly prepared and painted with Cukote, all the boat owner has to do is periodically haul the boat and renew just the amount that has ablated away. How often this has to be done depends on how many coats of Cukote were applied, vessels speed, turbulence, and water temperature. Ablating rate, as with any paint, gives time in service. Cukote Dry Film thickness is 2 mils, the Wet Film thickness is 4 mils per coat and 2 coats are recommended. High speed vessels or vessels in tropical water can expect a higher ablating rate. High ablating areas are typically found around the waterline and underwater gear such as the shaft, rudders, and props.

If applied at the recommended film thickness, Cukote will keep your vessel substantially free from fouling after multiple seasons in Florida. During this time you might see some slight algae or slime. This can easily be removed by either running your vessel at high speeds, rinsing it off with a high pressure hose, or by removing the build up with a soft brush, cloth, or sponge.

Cukote being tin-free utilizes cuprous oxide or commonly called copper. The cure times, is 3 to 6 hours between coats with 8 hours minimum before launch and two months maximum. Winter storage will need the coating to be sanded, pressure washed and recoated for optimum coating performance.

Cukote can be applied over some existing antifoulants. Nautical Coatings can not endorse this practice as we have no control over other antifouling manufacturers formulation changes. If due to expense customer does not want to prime old coating then remove all traces of loose paint and surface contamination. Sand thoroughly with 80-120 grit production paper; pressure wash surface and let dry. Apply 2 coats of Cukote. The optimum, is to, of course; sand, prime and apply 2 coats as per coating manual on previously painted surfaces.

Cukote can be applied directly over other Sea Hawk Antifoulants. In order to recoat follow instructions in Sea Hawk’s coating manual. For states that have enacted TBT restrictions Cukote is the product of choice for all applications except on aluminum.
3.0 MAINTENANCE GUIDE (CONTD)

3.5 BOTTOM BARRIER COATING AND PAINT PREPARATION:

IT IS RECOMMENDED THE UNDERWATER SURFACES BE COVERED W/ AN EPOXY BARRIER COAT TO PREVENT WATER PENETRATION INTO THE GEL COAT. BARRIER COATINGS ARE AVAILABLE FROM SEVERAL PAINT MANUFACTURERS, AND THEIR RECOMMENDATIONS SHOULD BE CAREFULLY FOLLOWED FOR A SUCCESSFUL APPLICATION.

FOR THOSE OWNERS WHO APPLY ANTI-FOULING PAINT THEMSELVES, IT SHOULD BE NOTED THAT MOST BRANDS REQUIRE A UNDERWATER FIBERGLASS SURFACES TO BE VERY CAREFULLY Sanded AND PRIMED IMMEDIATELY PRIOR TO THE FIRST APPLICATION ON A NEW BOAT. IN ANY EVENT, THE INSTRUCTIONS OF THE MANUFACTURER OF THE PAINT USED SHOULD BE FOLLOWED.

ANTI-FOULING PAINT SHOULD BE APPLIED TO THE BOTTOM OF YOUR CATALINA 30, IF IT IS TO BE MOORED IN EITHER FRESH OR SALIN WATER FOR ANY LENGTH OF TIME. THERE ARE MANY BRANDS AVAILABLE. ANTI-FOULING PAINT PREVENTS THE GROWTH OF ALGAE, BARNACLES, AND OTHER FOULING ORGANISMS ON UNDERWATER SURFACES. BEFORE APPLYING BOTTOM PAINT, THE BOTTOM SHOULD BE THOROUGHLY CLEANED WITH A SOLVENT TO REMOVE ANY WAX.

3.6 TEAK MAINTENANCE:

WOOD TRIM AND PARTS-MOST EXTERIOR WOOD IS TEAK AND CAN BE KEPT LOOKING GOOD BY OCCASIONAL OILING WITH TEAK OIL.

SHOULD THE TEAK BECOME WEATHERED, CLEANING AND BLEACHING WITH A commercIALLY AVAILABLe TEAK CLEANER AND BLEACH WILL RESTORE THE COLOR OF THE WOOD. THEN OIL THE WOOD WITH A GOOD GRADE TEAK OIL TO RESTORE THE GOLDEN COLOR OF THE TEAK. DO NOT USE WIRE OR HARD BRISTLE BRUSHES ON THE WOOD, AS THIS WILL REMOVE THE SOFTER WOOD BETWEEN THE ANNUAL RINGS AND LEAVE A ROUGH SURFACF.

3.7 SPAR AND RIGGING MAINTENANCE:

STANDING RIGGING:
YOUR BOAT IS EQUIPPED WITH STAINLESS STEEL STANDING RIGGING, DACRON RUNNING RIGGING, TO GIVE YOU YEARS OF TROUBLE FREE SERVICE. HOWEVER, 'DO TO NORMAL WEAR AND TEAR, IT IS RECOMMENDED THAT A PERIODIC INSPECTION BE MADE ON ALL FITTINGS AND WIRE. TURNBUCKLES SHOULD NEVER BE NEGLECTED AND SHOULD BE UNSCREWED FROM TIME TO TIME IN ORDER THAT THEY DON'T SIEZE. EVERY THREE MONTHS SHOULD BE ABOUT RIGHT FOR THE AVERAGE SAILOR. A SLIGHTLY BENT TURNBUCKLE SHAFT OR BROKEN WIRE IN YOUR SHROUDS SHOULD BE REPLACED IMMEDIATELY.

UNDER MOST CONDITIONS, 1 X 19 STANDING RIGGING HAS A SAFE "WORKING" LIFE SPAN OF APPROXIMATELY FIVE YEARS: SEVEN YEARS UNDER IDEAL CONDITIONS. FACTORS WHICH REDUCE THE LIFE OF THE WIRE ARE ENVIRONMENTAL FACTORS SUCH AS HIGH HUMIDITY (FLORIDA, THE CARIBBEAN, AND GULF STATES); HIGH SALINITY (GREAT LAKE, GULF STATES, OR MOORING NEAR A SEA WALL WITH CONSTANT SALT SPRAY); EXTREMES IN TEMPERATURE; AND INDUSTRIAL POLLUTION (PULP MILLS, GENERATING PLANTS, ACID RAIN, AND SMOG). HIGH LOADING OF THE RIGGING AS
MAINTENANCE GUIDE (CONTD)

REQUIRED IN MOST RACING BOATS ALSO INDUCES STRESS IN THE RIGGING SYSTEM. MANY OF US HAVE TO DEAL WITH AT LEAST ONE OF THESE CONDITIONS AND SHOULD CONSIDER REPLACING STANDING RIGGING AT THE FIVE YEAR LIMIT.

UNLIKE RUNNING RIGGING WIRE ROPE, WHICH GIVES US CLEAR SIGNS THAT IT IS DETERIORATING BY BROKEN STRANDS AND "MEAT HOOKS", STANDING RIGGING MAY GIVE NO SIGN THAT FAILURE IS IMMINENT. THE USUAL POINT OF FAILURE OF STAY OR SPROUD IS APPROXIMATELY 1/4" INSIDE THE BOTTOM SWEDGED THREADED STUD FITTING WHICH THREADS INTO THE TURNBUCKLE BARREL.

A COMMON METHOD OF VISUALLY MONITORING SWEDGE FITTING CONDITIONS EMPLOYED BY DISTANT RACERS AND CRUISERS IS TO DAB A SMALL RING OF ENAMEL PAINT AROUND THE JOINT BETWEEN THE WIRE AND THE SWEDGE FITTING. THIS WILL HELP PROVIDE A MEANS TO SEE IF THE WIRE IS PULLING OUT OF THE FITTING.

ANOTHER TECHNIQUE USED TO CHECK THE CONDITION OF SWEDGE FITTINGS IS A "DIE PENETRANT" TEST. THIS SIMPLE TEST WILL DETECT ANY CRACKS WHICH MAY DEVELOP IN THE FITTINGS DUE TO INTERNAL PRESSURE FROM THE CORROSIVE PROCESS. INEXPENSIVE DYE TEST KITS USUALLY ARE AVAILABLE AT MOST WELDING SUPPLY STORES. DYE TESTS USUALLY ARE NOT REQUIRED BY WEEKEND SAILORS, BUT MAY BE DONE BEFORE AN EXTENDED CRUISE OR OCEAN PASSAGE IF ANY DOUBT ABOUT THE INTEGRITY OF THE RIGGING EXISTS.

ALL STAINLESS STEEL WIRE ROPE RIGGING WILL DEVELOP SOME RUST FILM WHEN NEW. THIS IS NORMAL.

THE RUST IS CAUSED BY TWO FACTORS. WHEN WIRE ROPE IS MANUFACTURED, THE WIRE STRANDS ARE FED OVER STEEL ROLLERS DURING THE PROCESS OF TWISTING OF LAYING THE WIRE. TRACE AMOUNTS OF THE FERROUS STEEL FROM THE ROLLERS AND DIES ARE TRANSFERRED TO THE WIRE STRANDS. AS THIS SMALL AMOUNT OF STEEL RUSTS IT CAUSES A FILM ON THE NEW WIRE.

THE SECOND CAUSE OF THE RUST FILM ON NEW WIRE ROPE IS THE MICROSCOPIC VEINS OF FERROUS MATERIAL WHICH EXIST IN ALL STAINLESS STEEL. AFTER A PERIOD OF TIME, AS THE SURFACE MATERIAL VEINS ARE DEPLETED, AND THE STAINLESS STEEL HAS BEEN CLEANED SEVERAL TIMES, NEW RUST FILM DEVELOPMENT WILL SLOW TO A MINIMUM.

FOR THE AVERAGE SAILOR, THE BEST INSURANCE AGAINST A RIGGING FAILURE IS A PERIODIC (EVERY SIX MONTHS IS RECOMMENDED) INSPECTION OF ALL RIGGING PARTS, INCLUDING TURNBUCKLES, AND REPLACEMENT OF STANDING RIGGING AS REQUIRED.
3.0 MAINTENANCE GUIDE (CONT'D)

FITTINGS:

MARINE FITTINGS TODAY NEED LITTLE MAINTENANCE. DECK HARDWARE SHOULD BE HOSED DOWN WITH FRESH WATER AFTER EACH SAIL IN SALT WATER. STAINLESS STEEL FITTINGS SUCH AS PULPITS AND LIFELINE STANCHIONS SHOULD BE CLEANED AND WAXED PERIODICALLY TO MAINTAIN THEIR APPEARANCE. WINCHES REQUIRE OCCASIONAL CLEANING AND LUBRICATION. WHERE POSSIBLE, A MAINTENANCE BROCHURE FOR YOUR WINCHES HAS BEEN INCLUDED IN THIS MANUAL. MASTHEAD FITTINGS, HALYARD SHEAVES, ETC., SHOULD BE INSPECTED, CLEANED, AND LUBRICATED PERIODICALLY. KEEP YOUR EQUIPMENT CLEAN OF DIRT AND SALT.

SPARS:

LIKE ALL OTHER FITTINGS, MAST AND BOOMS SUFFER FROM SALT WATER, AIR AND SPRAY. THESE SHOULD BE KEPT WAXED WHERE POSSIBLE, AND AT LEAST ALWAYS HOSED DOWN WITH FRESH WATER. ALWAYS SEE THAT THE HALYARDS ARE TIED OFF AWAY FROM THE MAST. THIS WILL ELIMINATE SLAPPING IN THE WIND, AND SUBSEQUENT MARKING OF THE MAST.

FIND A HIGH PRESSURE NOZZLE AND SHOOT FRESH WATER TO THE TOP OF THE MAST AND SPREADERS. THIS WILL HELP KEEP YOUR SAILS CLEAN TOO, AS THEY RUB ON THE MAST AND SPREADERS.

INSPECT SPREADERS AND SPREADER BRACKETS FOR SIGNS OF FATIGUE. SEE THAT ENDS OF SPREADERS ARE WIRED AND WELL COVERED WITH TAPE TO PREVENT WEAR ON THE SAILS.

3.8 SAIL MAINTENANCE:

SAILS SHOULD NEVER BE PUT AWAY WET. IF THEY ARE WET AFTER SAILING, LEAVE THEM LOOSE IN RUNDLES AND DRY THEM AT YOUR FIRST OPPORTUNITY.

FOR MOST PROBLEMS SUCH AS COMMON DIRT, DRIFD OR CAKED SALT, ETC., TRY SCRUBBING THE SURFACE WITH A SOFT BRISTLED BRUSH AND LIQUID DETERGENT. AVOID HARSH POWDER DETERGENTS AND STIFF BRUSHES, AS THEY MAY DAMAGE THE FINISH OR STITCHING. THIS APPROACH SHOULD WORK NICELY FOR MOST APPLICATIONS. MORE SEVERE STAINS CAN BE TACKEN CARE OF BY THE FOLLOWING:

* IMPORTANT: FOR WHITE SAILS ONLY!

BLOOD: SOAK THE STAINED PORTION FOR 10-20 MINUTES IN A SOLUTION OF BLEACH (CLOROX) AND WARM WATER. GENERALLY 10 PARTS WATER TO 1 PART BLEACH. SCRUB AND REPEAT IF NEEDED. RINSE THOROUGHLY, PARTICULARLY NYLON, AND DRY COMPLETELY.

OIL, GREASE, TAR AND WAX: WARM WATER, SOAP AND ELBOW GREASE SEEM TO BE EFFECTIVE. ON HARD STAINS, PROPER STAIN REMOVER AND DRY CLEANING FLUIDS SHOULD DO THE TRICK. BE CAREFUL TO REMOVE ALL FLUIDS, AS THEY CAN SOFTEN THE VARIOUS RESINATED COATINGS ON SAILCLOTH.
MAINTENANCE GUIDE (CONT'D)

RUST AND METALLIC STAINS: THESE TYPES OF STAINS ARE VERY OFTEN THE MOST FRUSTRATING AND DIFFICULT TO REMOVE. FIRST SCRUB WITH SOAP AND WATER, AND APPLY ACETONE, M.E.K., OR ALCOHOL. AS A LAST RESORT, YOU MIGHT TRY A DILUTED MIXTURE (5%) OF OXALIC SOAKED FOR 15-20 MINUTES. HYDROCHLORIC ACID, 2 PARTS TO 100 IN WARM WATER, WILL ALSO WORK.

MILDEW: HOT SOAPY WATER WITH A LITTLE BLEACH WILL GENERALLY PREVAIL. AFTERSCRUBBING, LEAVE THE SOLUTION ON THE FABRIC FOR A FEW MINUTES AND RINSE THOROUGHLY. WHEN USING A BLEACH, A RESIDUAL CHLORINE SMELL MAY BE PRESENT AFTER RINSING. A 1% SOLUTION OF THIOSULPHATE (PHOTOGRAPHER'S HYPO) SHOULD REMOVE ALL CHLORINE TRACES. HERE AGAIN, RINSE AND DRY WELL.

PAINT AND VARNISH: ACETONE AND M.E.K. SHOULD REMOVE MOST COMMON PAINT AND STAINS. VARNISH CAN BE EASILY REMOVED WITH ALCOHOL.

TEMPERKOTE OR MYLAR SAILS ARE STILL NEW AND EXPERIMENTAL. AT THIS POINT IN TIME, AVOID MOST SOLVENTS, AS THEY CAN DAMAGE THE FABRIC OVER A PERIOD OF TIME. SOAP AND DILUTED BLEACHES SHOULD TAKE CARE OF MOST STAINS.

GENERALLY SPEAKING, USE ALL SOLVENTS WITH CARE. ALWAYS RINSE AND DRY THOROUGHLY. IT SHOULD BE EMPHASIZED THAT NYLON RIPSTOP SPINNAKER FABRICS ARE LESS DURABLE AND MORE SENSITIVE THAN THEIR POLYESTER COUNTERPARTS. BLEACHES AND SOLVENTS CAN RUIN NYLON IF NOT USED PROPERLY.

FOLLOW THE ABOVE GUIDELINES, TAKE YOUR SAILS INTO YOUR SAILMAKER FOR PERIODICAL INSPECTION, AND I'M SURE YOU WILL HAVE MANY EFFECTIVE SEASONS OF RACING AND CRUISING PLEASURE.

INTERIOR CUSHION, FABRIC COVER:

CLEANING:

1. REGULAR VACUUM CLEANING OR BRUSHING IN THE DIRECTION OF THE PILE WITH A SOFT BRUSH.

2. STAINS SHOULD, IF POSSIBLE, BE REMOVED AT ONCE WITH A DAMP CLOTH. DO NOT ALLOW STAINS TO HARDEN AND AGF.

3. GREASY STAINS CAN BE REMOVED WITH ORDINARY CLEANING FLUID.

4. FOR OVERALL CLEANING, USE COMMERCIAL TYPES OF UPHOLSTERY SHAMPOO USING ONLY THE FOAM TO PROTECT THE BACK PADDING FROM MOISTURE. AFTER A MINUTE OR SO, REMOVE FOAM, AND WHEN DRY, VACUUM OR BRUSH IN THE DIRECTION OF THE PILE.

5. DO NOT USE HEAT SUCH AS AN IRON OR STEAM.
3.9.1 **CURTAINS:**

WHEN CURTAINS BECOME SOILED, DO NOT HAND OR MACHINE WASH, FOR IT WILL WEAKEN THE MATERIAL. DRY CLEANING IS THE RECOMMENDED PROCEDURE FOR THE REMOVAL OF ANY DIRT OR STAINS.

4.0 **YACHT SYSTEMS**

4.1 **RIGGING:**

4.1.1 **STEPPING THE MAST:**

1. BEFORE STEPPING THE MAST CHECK ALL STANDING RIGGING LENGTHS AGAINST THE CHECKLIST ON PAGE 21.

2. CHECK ALL MAST LIGHT WIRING, BE SURE THE MASTHEAD ANCHOR LIGHT, STEAMING LIGHT AND DECK LIGHT FUNCTION, THE WIRES EXITING AT THE BASE OF THE SPAR SHOULD BE TAPED UP TO PREVENT DAMAGE WHEN THE SPAR IS SET ON THE STEP.

3. PREPARE TO STEP THE MAST IN THE FOLLOWING SEQUENCE:
 a) CHECK ALL RIGGING LENGTHS & INSPECT ALL END FITTINGS
 b) ATTACH ALL SHROUDS, FORESTAY & BACKSTAY. TAPE CLEVIS PINS & SPREADER TIPS, CHECK ALL HALYARDS & TAPE TO MAST.
 c) CHECK MAST WIRING & MAST LIGHT WIRING AT MAST STEP.
 d) SLIDE MAST COLLAR BOOT OVER BOTTOM END OF MAST & TAPE TO MAST NEAR GOOSENECK.
 e) RAISE MAST & GUIDE THROUGH DECK.
 f) BEFORE MAST CONTACTS MASTSTEP CASTING, SLIDE TIE DOWN PADEYE INTO SAIL TRACK ON THE AFT SIDE OF THE MAST.
 g) ATTACH SHROUDS, FORESTAY AND BACKSTAY.
 h) INSERT MAST WEDGES BETWEEN COLLAR & MAST, TO CENTER MAST IN COLLAR. (4) WEDGES PROVIDED
 i) INSTALL MAST BOOT OVER DECK COLLAR & CAULK WITH SEALANT.
 j) MAKE ELECTRICAL CONNECTIONS AT BASE OF MAST FOR MAST LIGHTS & CHECK CIRCUITS.
 k) RUN HALYARDS THROUGH TURNING BLOCKS AT DECK COLLAR.
 l) TUNE RIGGING AT DOCK & WHEN UNDER SAIL.

4.1.2 **TUNING THE MAST:**

YOUR MAST IS HELD ALOFT BY THE STANDING RIGGING (FORESTAY, BACKSTAY, UPPER SHROUDS, FORE AND AFT, LOWER SHROUDS). THE TERM "TUNING" REFERS TO ADJUSTMENT OF THR STANDING RIGGING SO THAT THE MAST REMAINS "IN COLUMN" (NOT BENT) WHEN UNDER LOAD, THIS IS ACCOMPLISHED BY FOLLOWING THE PROCEDURE OUTLINED BELOW:

AT THE DOCK

1. ADJUST FORESTAY AND BACKSTAY SO THAT THE MAST IS STRAIGHT UP AND DOWN. TIE A BOLT TO 6 TO 7 FOOT LONG PIECE OF LIGHT LINE TO MAKE A QUICK PLUMB BOB, AND TAPE THE FREE END OF THE LINE TO THE FRONT OF THE MAST AS HIGH UP AS YOU CAN REACH. THIS DEVISE WILL HELP YOUR TO DETERMINE IF THE MAST IS PERPENDICULAR OR NOT. OTHERWISE, SIGHT YOUR MAST WITH THE CORNER OF A BUILDING.
2. ADJUST THE UPPER SHROUDS SO THAT THE MAST IS STRAIGHT UP AND DOWN AT WARTSHIPS. THAT IS, FROM SIDE TO SIDE AS OPPOSED TO BOW AND STERN.

3. THE UPPER SHROUDS SHOULD BE FIRM BUT NOT BAR TIGHT. A 50 POUND PUSH SHOULD DEFLECT THE UPPER SHROUD ABOUT 1" AT SHOULDER HEIGHT.

4. THE LOWER SHROUDS (4 OF THEM) SHOULD BE ADJUSTED SO THAT THEY ARE LOOSER THAN THE UPPER SHROUDS. WHILE AT DOCK, THEY SHOULD HAVE NO SLACK, BUT NO TENSION EITHER. NO LOWER SHROUD, WHEN PULLED, SHOULD DEFLECT THE MAST MORE THAN ANY OTHER SHROUD WHEN PULLED EQUALLY HARD. IF THIS CAN'T BE ACHIEVED, THE UPPER SHROUDS ARE TOO TIGHT. BACK OFF ONE HALF TURN AT A TIME OF THE UPPER SHROUD TURNBUCKLES UNTIL THE TENSION ON THE LOWER SHROUDS IS BROUGHT INTO BALANCE.

UNDER SAIL

THE OBJECT OF FINE TUNING IS TO HAVE THE MAST "IN COLUMN" (NOT BENT FORE OR AFT OR AT WARTSHIPS) WHEN SAILING IN CONDITIONS TYPICAL FOR YOUR AREA. THIS IS ACCOMPLISHED THROUGH ADJUSTMENTS TO THE LOWER SHROUD TURNBUCKLES. HERE ARE SOME POINTS TO LOOK FOR:

1. WHEN SAILING ON PORT TACK, SIGHT UP THE MAST FROM THE BASE. IF THE MIDDLE (WHERE THE SPREADERS ARE) IS SAGGING TO LEeward, TAKE UP EQUALLY ON BOTH PORT LOWER SHROUDS UNTIL THE MAST IS IN "COLUMN". REPEAT THIS PROCEDURE ON STARBOARD TACK.

2. IF, WHEN SIGHTING UP THE MAST WHILE ON PORT TACK, THE MIDDLE IS BENT FORWARD (BUT NOT TO LEeward) TAKE UP A TURN ON THE PORT AFT LOWER SHROUD AND LET OUT A TURN ON THE PORT FORWARD LOWER SHROUD TURNBUCKLE. REVERSE THESE ADJUSTMENTS IF THE MIDDLE OF THE MAST IS AFT OF THE "IN COLUMN POSITION".

3. IF A PERFECTLY STRAIGHT MAST IS NOT OBTAINED, THE MAST HEAD (TOP) MAY BE CURVED AFT AND TO LEeward. THE MAST HEAD SHOULD NEVER BE "HOOKED" FORWARD NOR TO WEATHER.

ALL RIGGING WIRE USED ON YACHTS HAS A TENDENCY TO STRETCH, ESPECIALLY ON A NEW YACHT, AND AFTER YOU HAVE SAILLED IN HEAVIER WIND THAN YOU ARE NORMALLY EXPERIENCED TO. THEREFORE, YOU SHOULD PERIODICALLY CHECK THE TENSION ON THE SHROUDS AND STAYS, TIGHTENING THEM UP IF IT IS REQUIRED. RIGGING, AS WELL AS TUNING, BECOMES ALL THE MORE IMPORTANT WHEN SETTING UP THE MAST. A KNOWLEDGEABLE PERSON SHOULD OVERSEE THE RIGGING AND TUNING SO AS TO ELIMINATE THE POSSIBILITY OF AN ECCENTRIC LOAD WHICH MIGHT OCCUR WITH AN IMPROPERLY LOADED SHROUD. SPECIAL ATTENTION SHOULD BE GIVEN TO THE INITIAL STRETCH OF THE SHROUDS AND A FURTHER GRADUAL STRETCH OF THE WIRE OVER THE FIRST FEW HARD OUTINGS.
4.1.7 **MAIN SAIL REEFING:**

REEFING SHOULD ALWAYS BE DONE BEFORE IT BECOMES NECESSARY. SOME SAILORS USE THE RULE OF THUMB THAT IF THE THOUGHT OF REEFING OCCURS TO YOU, IT IS TIME TO REEF. SAILING AT EXTREME ANGLES OF HEEL, 25 DEGREES OR MORE, IS NOT EFFICIENT, FAST, OR COMFORTABLE.

THE CATALINA 30 IS EQUIPPED WITH JIFFY REEFING, ALSO CALLED SLAB REEFING, FOR REEFING THE MAIN SAIL. THE SYSTEM CONSISTS OF A TRACK AND TWO REEFING CARS MOUNTED ON THE STARBOURD, OUTBOARD END OF THE BOOM. TWO CARS ARE PROVIDED SO THAT TWO SETS OF REEF POINTS CAN BE PUT IN THE MAINSAIL. TWO CLEATS ARE LOCATED ON THE MAST BELOW THE GOOSENCK, FOR REEFING THE LUFF OF THE MAIN.

RUN THE REEFING LINES PROVIDED THROUGH THE CRINGLES (GROMMETS) IN THE LUFF AND LEECH OF THE MAIN SAIL IN PREPARATION FOR REEFING. PER ILLUSTRATION, ONE CREW STATIONED IN THE COCKPIT AND ONE CREW AT THE MAST ARE RECOMMENDED FOR FAST, SAFE REEFING.

REEFING PROCEDURE:

1. **TAKE UP SLACK IN MAIN BOOM TOPPING LIFT, CLEATED TO PORT SIDE OF BOOM.**

2. **RELEASE THE MAIN Halyards TO A PREDETERMINED POINT. MARKING THE Halyard WITH INK OR A COLORED THREAD WOVEN INTO THE LINE IS HELPFUL. RECleat THE halyard AFTER LOWERING.**

4. **EASE THE MAINSHEET.**

5. **PULL THE LEECH CRINGLE DOWN TO THE BOOM, BY PULLING THE LEECH REEFING LINE ON THE STARBOURD SIDE OF THE BOOM AND MAKE THE LINE FAST.**

6. **TRIM IN THE MAINSHEET.**

7. **SNUG UP THE MAIN HalyARD AS REQUIRED TO FLATTEN OUT THE MAINSAIL.**
NOTE:
BLOCKS MAY BE REVERSED SO CAM IS AT TOP, AT OWNERS OPTION.
4.2 ELECTRICAL:

4.2.1 BATTERIES:

YOUR ELECTRICAL SYSTEM IS POWERED BY A MARINE GRADE 12 VOLT, DEEP CYCLE 90 AMP HOUR BATTERY. ATTENTION SHOULD BE GIVEN TO MAINTAINING THE PROPER LEVEL OF DISTILLED WATER. DO NOT OVER-FILL.

THE BATTERIES ARE PROVIDED WITH A TIE DOWN TO PREVENT ITS TIPPING OVER AT EXTREME ANGLES OF HEEL. BE SURE THESE TIE DOWNS ARE FASTENED SECURELY.

WITH PROPER CARE, THE BATTERY INSTALLED IN YOUR CATALINA 30 WILL PROVIDE LONG AND SATISFACTORY SERVICE. PROPER CARE IS NOT DIFFICULT IF A FEW BASIC POINTS ARE KEPT IN MIND.

WARNING! THE ELECTROLYTE IN A BATTERY IS A SOLUTION OF SULPHURIC ACID. IF ANY SHOULD ENTER THE EYES, RINSE IMMEDIATELY WITH LARGE AMOUNTS OF FRESH WATER, AND SEEK MEDICAL ATTENTION. ELECTROLYTE SPILLED ON SKIN SHOULD BE RINSED WELL WITH FRESH WATER ALSO. EVEN A SMALL AMOUNT OF ELECTROLYTE SPILLED ON CLOTHING WILL DESTROY THE CLOTHING.

ELECTROLYTE LEVEL:

THE ELECTROLYTE LEVEL IN A BATTERY SHOULD NEVER BE ALLOWED TO FALL LOW ENOUGH TO EXPOSE THE PLATES. THIS NOT ONLY RESULTS IN A LOSS OF BATTERY CAPACITY WHILE THE BATTERY IS LOW, BUT WILL CAUSE HARDENING OF THE ACTIVE MATERIAL ON THE BATTERY PLATES. THIS WILL RESULT IN A PERMANENT LOSS OF BATTERY CAPACITY.

CAUTION! USE ONLY PURE DISTILLED WATER TO REPLENISH ELECTROLYTE LEVELS. THE WATER FROM MANY CITY WATER SUPPLY SYSTEMS IS UNSATISFACTORY FOR BATTERY USE.

DISCHARGED STATE:

LEAVING A BATTERY IN A DISCHARGED STATE FOR ANY LENGTH OF TIME CAN ALSO RESULT IN A PERMANENT LOSS OF CAPACITY FOR THE BATTERY. DOING SO IN COLD WEATHER CAN DESTROY THE BATTERY SINCE IT WILL FREEZE AT RELATIVELY LOW TEMPERATURES.

CLEAN CONNECTIONS:

KEEP BATTERY CONNECTIONS CLEAN AND TIGHT. A CUP FULL OF STRONG BAKING SODA SOLUTION AND A TOOTHBRUSH WILL CLEAN CORROSION FROM THE TERMINALS AND NEUTRALIZE ANY SPILLED ACID (DO NOT ALLOW ANY OF THE SOLUTION TO ENTER THE BATTERY CELLS). A COATING OF PETROLEUM JELLY ON THE BATTERY TERMINALS WILL INHIBIT CORROSION.
4.0 YACHT SYSTEMS (CONT'D)

4.2.2 MAIN BATTERY SWITCH:

Each electrical circuit is fused under a screw cover and spares should be obtained before long cruises. The system is also controlled by a master switch. You should be sure that your boat is free of gasoline fumes before using the electrical system. Always run the blower for at least five minutes before starting the engine.

The circular battery switch (see illustration 4.2.3) has the markings 1, 2, and "all" as well as "off". If you have ordered the extra battery option, you can selectively charge the battery with the engine alternator. Many experienced sailors use battery #1 for electrical lighting needs and keep #2 in reserve for starting the engine.

When the engine is running, never pass through the "off" position to charge from one battery to the other or the alternator diodes will be burned out. Switching from one battery to another should only be done when the engine is stopped. If both batteries are of equal charge, keep the selector switch on "all" position, and use "all" to start the engine if both batteries are low.

![Main Battery Switch Schematic]

4.2.4 110 VOLT SYSTEM:

The optional 110 volt ac system is connected to shore power by a grounded twist-lock connector mounted on the outside of the port cockpit coaming.

A thirty (30) amp two pole circuit breaker is located on the main panel. Five (5) duplex outlets for the 110 volt system are located in the cabin. Be certain that all 110 volt appliances, other than lamps, have an adequate grounding connector. Wet feet or moist atmosphere increases the potential shock hazard.

Important: Do not open the electrical panel for any purpose with the 110 v. shore power connected to the dock. 110 v. wiring is exposed when the panel is open. Contact with 110 volt wiring can cause electrocution!
4.3.2 MANUAL BILGE PUMP:

THE MANUAL BILGE PUMP IS LOCATED IN THE PORT COCKPIT LOCKER. THE HANDLE IS STORED IN A CLIP FITTING JUST ABOVE THE PUMP INSIDE THE LOCKER. INSERT THE HANDLE THROUGH THE WATER TIGHT FITTING IN THE COCKPIT TO OPERATE THE PUMP.

THE PUMP INTAKE HOSE IS IN THE KEEL STUB UNDER THE MAIN CABIN SOLE. THE BILGE PUMP SHOULD BE OPERATED AFTER EACH TIME THE SHOWER IS USED. THE BILGE PUMP SHOWN IS HOT AND COLD PRESSURE SYSTEM PLUMBING SCHEMATIC 4.3.1.

4.3.3 SEACOCKS:

ALL UNDERWATER THRU HULL FITTINGS ARE EQUIPPED WITH GATE VALVES. IT IS GOOD PRACTICE TO CLOSE ALL GATE VALVES WHEN LEAVING THE BOAT, ESPECIALLY FOR LONG PERIODS OF TIME.

TO CLOSE SEACOCKS, TURN CLOCKWISE; TO OPEN, TURN COUNTER-CLOCKWISE.

IT IS GOOD PRACTICE TO OPERATE THE GATE VALVES AT LEAST ONCE A MONTH TO KEEP THEM IN GOOD WORKING ORDER. CHECK THE PACKING GLANDS ON ALL GATE VALVES TO AVOID WATER SEEPAGE.
MARINE TOILET OPERATION:

USING THE HEAD:

1. READ THE INSTRUCTIONS FOR OPERATION OF THE TOILET SUPPLIED WITH THE MARINE HEAD. THESE INSTRUCTIONS ARE ALSO PRINTED ON THE TOILET PUMP HOUSING. BE SURE EVERYONE WHO WILL BE USING THE HEAD IS FAMILIAR WITH THESE INSTRUCTIONS.

2. IMMEDIATELY BEFORE USING THE HEAD, THE INLET VALVE "A" MUST BE OPENED. THIS PROVIDES FLUSHING WATER TO THE TOILET. THE VALVE SHOULD BE KEPT CLOSED WHEN THE HEAD IS NOT IN USE. THIS WILL PREVENT WATER FROM FLOODING THE BOAT IF THE VALVE IN THE TOILET PUMP SHOULD FAIL.

3. WASTE WILL BE PUMPED DIRECTLY INTO THE HOLDING TANK WHEN THE BOWL IS EMTIED. A MINIMUM AMOUNT OF WATER FOR EVERY FLUSH SHOULD BE USED IN ORDER TO TAKE BEST ADVANTAGE OF THE TANKS CAPACITY BETWEEN PUMP-OUTS.

EMPTYING THE TANK THRU THE DECK DISCHARGE PLATE:

1. THE HOLDING TANK SHOULD BE EMTIED VIA THE DECK DISCHARGE PLATE ONLY AT APPROVED SHORE BASED PUMP-OUT STATIONS.

2. REMOVE THE CAP FROM THE DECK DISCHARGE PLATE. THE THREADS ON THE PLATE CAP SHOULD BE PERIODICALLY COATED WITH SILICONE SPRAY OR PETROLEUM JELLY TO INSURE A GOOD SEAL.

3. THE PUMP-OUT STATION SUCTION HOSE SHOULD FORM A SEAL AT THE DECK PLATE.

4. BE SURE INLET VALVE "A" IS CLOSED WHEN THE TANK IS BEING EMTIED.

5. AFTER THE TANK IS EMTY, YOU MAY WISH TO OPEN VALVE "A" AND PUMP SOME WATER THRU THE TOILET AND INTO THE TANK TO DILUTE RESIDUAL SLUDGE AND RINSE THE TANK AND LINES.

6. CLOSE ALL VALVES AFTER THE TANK IS EMTIED AND RECAP THE DECK PLATE.

EMPTYING THE TANK USING THE MACERATOR PUMP:

1. READ THE MACERATOR PUMP OPERATING INSTRUCTIONS SUPPLIED BY THE PUMP MANUFACTURER.

2. CLOSE THE INLET VALVE "A".

3. OPEN THE THRU HULL VALVE "B".

4. TURN ON THE PUMP WITH THE SWITCH ON THE 12 VOLT PANEL.

5. THE PUMP WILL CHANGE TONE AFTER IT BECOMES PRIMED. IT WILL RESUME THE HIGHER PITCHED TONE AFTER THE TANK IS EMTIED.
6. You may wish to rinse the tank, hose lines, and macerator pump by pumping clear water through the head, then repeating the procedure for emptying the tank.

7. Close valve "B" immediately after emptying the holding tank.

4.3.6 Macerator Pump and Troubleshooting:

Problem 1: The Macerator Pump Motor Starts Then Starts.

A. Check the fuses; it should be 20 amp.

B. Check the valves; "B" valve must be open.

C. Check the vent line. If the boat has been sailed at extreme angles of heel, fluid may be clogging the vent line. Disconnect the vent at the tank and empty the hose into a disposable container.

D. Sludge may have formed in the bottom of the tank. This should be diluted as much as possible. The tank should be emptied regularly to prevent sludge build up.

Problem 2: The head toilet pump has excessive back pressure and will not evacuate the bowl.

A. Refer to the toilet manufacturers specifications and operation instructions.

Problem 3: The Macerator Pump, when on, makes a high pitched sound but does not empty the tank.

A. Impeller in macerator pump is faulty and must be replaced.

B. The vent is clogged and the pump cannot pull a prime against the vacuum in the tank.

C. The hose into the pump may be clogged.

D. The pump may be drawing air thru the deck plate preventing a prime. Check seal at deck plate marked "waste", and lubricate threads.
4.4.1 GENERAL ENGINE INFORMATION:

FOR A COMPLETE DESCRIPTION OF YOUR ENGINE, PLEASE CONSULT THE GUIDE SUPPLIED BY THE ENGINE MANUFACTURER. THIS CAN BE FOUND IN YOUR OWNER'S PACKET.

TWO POINTS ARE WORTH SPECIAL ATTENTION. FIRSTLY, MARINE ENGINES WORK UNDER CONDITIONS TOUGHER THAN THOSE CONDITIONS OF AUTOMOTIVE ENGINES. YOUR MARINE ENGINE FACES CONSTANT TORQUING NOT ENCOUNTERED ON THE HIGHWAY. FOR THIS REASON, YOU MUST CHANGE YOUR ENGINE'S CRANK OIL AS RECOMMENDED IN THE ENGINE MANUFACTURER'S GUIDE. SECONDLY, BEFORE USING YOUR ENGINE, THE SHAFT COUPLING MUST BE ADJUSTED WITHIN A TOLERANCE OF .003 T.I.R. THOUSANDTHS AFTER LAUNCHING. THIS IS DONE DURING COMMISSIONING OF THE YACHT. BE SURE THAT YOUR DEALER HAS MADE THIS ADJUSTMENT BEFORE USING YOUR ENGINE.

CHANGE THE OIL REGULARLY. KEEP SPARE SPARK PLUGS AND ALTERNATOR BELTS ON HAND AND USE ONLY 2/3 TO 3/4 THROTTLE ON LONG PASSAGES. KEEP YOUR FUEL TANK FULL WHENEVER POSSIBLE TO PREVENT WATER CONDENSATION IN YOUR FUEL TANK.

TO RETARD ELECTROLYSIS, WE RECOMMEND INSTALLING A ZINC COLLAR IMMEDIATELY ON THE PROPELLER SHAFT.
4.0 YACHT SYSTEMS (CONT'D)

4.4.2 SHAFT PACKING GLAND (STUFFING BOX):

THE PACKING GLAND IS LOCATED UNDER THE CABIN SOLE AT THE BASE OF THE COM-
PARISON WAY LADDER.

A PROPERLY ADJUSTED SHAFT PACKING GLAND SHOULD DRIP SLIGHTLY (FROM 4 TO 10
PER MINUTE) WITH THE ENGINE OFF. TOO LOOSE AN ADJUSTMENT WILL ALLOW TOO
MUCH WATER IN THE BILGE AND ENGINE OPERATION WILL SPRAY WATER FROM THE SHAFT.
TOO TIGHT AN ADJUSTMENT WILL ROB THE ENGINE OF POWER, AND THE LACK OF WAT-
TER LUBRICATION IN THE PACKING GLAND CAN GENERATE ENOUGH HEAT TO DAMAGE THE
GLAND AND/OR SCORE THE PROPELLER SHAFT.

ADJUSTMENT:

1. HOLDING THE PACKING NUT WITH ONE WRENCH, USE A SECOND WRENCH TO LOOSEN
THE LOCK NUT. TURN THE LOCK NUT FAR ENOUGH TO KEEP IT FROM INTERFERING
WITH THE NEXT ADJUSTMENT (2 OR 3 TURNS).

2. TIGHTEN THE PACKING NUT TO OBTAIN 4 TO 15 DROPS PER MINUTE. HAND TIGHTEN-
ING OF THE PACKING NUT IS OFTEN SUFFICIENT TO OBTAIN THIS ADJUSTMENT. IF
THIS IS NOT THE CASE, AN ADDITIONAL 1/4 TO 1/2 TURN WITH THE WRENCH SHOULD
PRODUCE THE DESIRED RESULT.

3. HOLD THE PACKING NUT IN PLACE WITH ONE WRENCH, AND USE THE SECOND WRENCH
TO BRING THE LOCKING NUT SECURELY AGAINST THE PACKING NUT. MAKE CERTAIN
THAT THE LOCKING NUT IS TIGHT. FAILURE TO DO THIS COULD ALLOW THE PACK-
ING NUT TO BACK OFF WHEN THE ENGINE IS OPERATING.

4. OPERATE THE ENGINE AT SLOW SPEEDS IN FOREWARD AND REVERSE AND USE A LIGHT
TO CHECK FOR EXCESSIVE WATER AT THE PACKING NUT. SHUT OFF THE ENGINE AND
RECHECK PACKING FOR PROPER DRIP.

4.4.3 SHAFT ALIGNMENT:

FOR PROPER OPERATION OF THE ENGINE, THE PROPELLER SHAFT AND ENGINE MUST BE
ALIGNED.

ALIGNMENT IS GAUGED AT THE ENGINE AND SHAFT COUPLING. ALIGNMENT PROCEDURES
MUST BE DONE WITH THE BOAT IN THE WATER AFTER THE MAST IS ERECTED, AND THE
RIG IS TUNED.

1. THE PROPELLER SHAFT MUST BE DIMPLED (1/8' DEEP) FOR TWO (2) COUPLING SET
SCREWS. THE SET SCREWS MUST BE SAFETY WIRED, USING THE STAINLESS STEEL
WIRE PROVIDED, AS ILLUSTRATED. CHECK KEY IN KEY WAY, AS IT MUST BE IN
PLACE BETWEEN SHAFT AND COUPLER.

2. REMOVE COUPLING FLANGE BOLTS AND CHECK PROPELLER SHAFT FOR CLEARANCE.
ADJUST STUFFING BOX TO PREVENT EXCESSIVE SEEPAGE, YET ALLOW SHAFT TO SPIN
FREELY.

3. SLIDE SHAFT AWAY FROM ENGINE AND CHECK COUPLING MATING SURFACES. THESE
4. Slide shaft forward to connect coupling surfaces. Pilot on transmission flange must align with recess in shaft coupling flange. This is an indication of correct axial alignment.

5. With coupling flanges in contact, measure gap around edge of coupling flanges with .003 feeler gauge. Maximum allowable gap at any point is three thousandths of an inch. Take this measurement several times.... rotating shaft 1/4 turn each time. Any gap in excess of .003 must be corrected by changing engine position, especially fore/aft tilt.

For example, excessive gap at the bottom of the coupling (see drawing) indicates engine is tilted too far aft (front too high). Using a 15/16 end wrench, loosen lock nuts on forward motor mount(s). Lower front of engine by clockwise rotation of motor mount nuts. Remeasure gap at coupling. A gap at the top of the coupling would require the exact reverse procedure.

7. Repeat steps 5 and 6 until alignment within tolerance is achieved.

8. Tighten motor mount lock nuts and install coupling bolts.

Note: Alignment should be checked yearly, or whenever any excess vibration is noticed. The alignment can also be affected by changes in rigging tension.
MEASURE GAP BETWEEN MATING FACES OF COUPLING FLANGES. MAXIMUM ALLOWABLE GAP AT ANY POINT IS .003 WHEN ANY POINT OF COUPLING FACES ARE IN CONTACT. TAKE THIS MEASUREMENT SEVERAL TIMES, ROTATING SHAFT 1/2 TURN EACH TIME. THIS MEASUREMENT MUST BE MADE WITH COUPLING BOLTS REMOVED.
FUELING:

THE FUEL SYSTEM OF THE CATALINA 30 IS ILLUSTRATED AND CONSISTS OF A 21 GALLON ALUMINUM FUEL TANK, FUEL SUCTION AND RETURN LINES, A SECONDARY FUEL FILTER ON THE ENGINE, AND AN ELECTRIC FUEL PUMP CONTROLLED BY THE ENGINE KEY SWITCH, A DECK FILL PLATE, AND AN OVER BOARD VENT THRU THE TRANSON.

REFER TO THE UNIVERSAL ENGINE MANUAL PROVIDED FOR RECOMMENDED FUEL TYPE. A DIESEL ENGINE DOES NOT REQUIRE AN IGNITION SYSTEM AND IS SUPERIOR TO A GASOLINE ENGINE IN DEPENDABILITY. THIS DEPENDS ON THE CLEAN FUEL BEING SUPPLIED TO THE ENGINE SINCE THE CLOSE TOLERANCES REQUIRED BY THE ENGINE'S FUEL DELIVERY SYSTEM MAKE IT INTOLERANT OF DIRT OR WATER CONTAMINATION. THE ENGINE IS SUPPLIED WITH PRIMARY AND SECONDARY FILTERS THAT PREVENT CONTAMINANTS FROM REACHING THE ENGINE WHERE THEY COULD CAUSE DAMAGE. HOWEVER, A CLOGGED FILTER, ALTHOUGH PROVIDING THIS PROTECTION, CAN ALSO STOP AN ENGINE. KEEPING THE FILTERS FREE OF DIRT AND WATER IS CRITICAL.

BEFORE FUELING:

1. EXTINGUISH ALL SMOKING MATERIALS AND CHECK THE FUELING AROUND THE AREA FOR OTHER SOURCES OF SPARK OR FLAME. REMOVE IF FOUND.

2. SHUT OFF THE ENGINE, AND ANY ELECTRICAL ACCESSORIES OR DEVICES.

3. DE-ENERGIZE ALL ELECTRICAL EQUIPMENT BY TURNING THE SELECTOR SWITCH TO THE OFF POSITION.

4. CLOSE ALL HATCHES AND PORTS.

5. ENSURE THAT A FIRE EXTINGUISHER IS READILY AVAILABLE.

6. ENSURE THAT THE PROPER (DIESEL, NOT GASOLINE) HOSE IS ABOUT TO BE USED.

WARNING: DO NOT FUEL DURING AN ELECTRICAL STORM. BESIDES THE OBVIOUS HAZARD OF LIGHTNING, THE POSSIBILITY OF STATIC DISCHARGE IS GREATLY INCREASED AT THIS TIME.

FUELING PROCEDURE:

1. REMOVE FILL PIPE COVER USING A PROPER TOOL.

2. PLACE NOZZLE OF FUEL HOSE IN THE FILL PIPE. KEEP THE NOZZLE IN CONTACT WITH THE DECK PLATE RIM DURING FUELING TO AVOID THE POSSIBILITY OF A STATIC SPARK.

3. FILL SLOWLY. DO NOT OVERFILL. IF IT IS NOT POSSIBLE TO SEE THE METER ON THE FUEL PUMP, THE ATTENDANT OR A CREW MEMBER SHOULD CALL OUT THE GALLONAGE FROM THE FUEL DOCK. FILLING THE TANK TO ONLY 95% OF CAPACITY WILL AVOID OVERFLOW PROBLEMS ON A HOT DAY.

4. REPLACE COVER, CLEAN UP ANY SPILLED FUEL. IF ANY RAGS, ETC., WERE USED FOR
4.0 YACHT SYSTEMS (CONT'D)

THIS PURPOSE, DISPOSE OF THEM ASHORE.

5. CHECK BELOW DECKS FOR PRESENCE OF FUMES OR FUEL LEAKAGE. CHECK BILGE, ENGINE SPACE, AND MAIN CABIN. IF FUMES OR EVIDENCE OF LEAKAGE IS FOUND, DETERMINE THE CAUSE, CORRECT IT, AND CLEAN UP ANY SPILLAGE BEFORE PROCEEDING.

6. OPEN ALL HATCHES AND PORTS TO VENILATE THE BOAT.

7. SWITCH ON BATTERY.

8. THE ENGINE SHOULD BE STARTED ONLY WHEN IT IS CERTAIN THAT NO POTENTIALLY HAZARDOUS CONDITIONS EXIST.

4.4.6 FUEL SANITATION:

BACTERIAL CONTAMINATION:

BACTERIAL CONTAMINATION OF THE DIESEL FUEL CAN CAUSE PROBLEMS. THE BACTERIA NEED BOTH WATER AND FUEL TO EXIST, AND THRIVE AT THE FUEL/WATER INTERFACE IN A FUEL TANK. AS THEY MULTIPLY, THEY FORM MORE WATER AND A FILTER CHOCKING BROWN SLIME. THEIR PRESENCE WILL NOT BE KNOWN UNTIL ROUGH WEATHER CHURNS UP THE FUEL TANK CAUSING CLOGGED FILTERS AT THE WORST POSSIBLE TIME.

KEEPING WATER OUT OF THE FUEL WILL PREVENT THE PROBLEM ENTIRELY. HOWEVER, A CERTAIN AMOUNT OF WATER DUE TO NORMAL CONDENSATION IN THE TANK IS TO BE EXPECTED.

FUEL ADDITIVES:

FUEL ADDITIVES OR FUNGICIDES PROVIDE ANOTHER MEANS OF COMBATTING CONTAMINATION. ADDITIVES BREAK THE WATER DOWN TO A MOLECULAR LEVEL, DISPERSING IT THROUGHOUT THE FUEL AND ALLOWING IT TO PASS HARMLESSLY THROUGH THE FUEL SYSTEM. SEVERAL BRANDS OF THIS PRODUCT ARE AVAILABLE AT MARINE STORES.
EXHAUST SYSTEM MAINTENANCE:

IN-BOARD ENGINE INSTALLATIONS ON SAILBOATS DIFFER FROM ENGINE INSTALLATIONS ON POWER BOATS. THE PRIMARY DIFFERENCE IS THAT THE ENGINE IS USUALLY INSTALLED BELOW THE WATERLINE OF THE VESSEL.

THE BENEFITS OF THESE LOCATIONS ARE THAT THE WEIGHT OF THE ENGINE IS WHERE IT WILL NOT ADVERSELY EFFECT TRIM, AND THAT THE SHAFT IS AT AN EFFICIENT ANGLE FOR POWERING AND MINIMUM DRAG WHEN SAILING.

ENGINE INSTALLATIONS BELOW THE WATERLINE REQUIRE SPECIAL ATTENTION TO THE DESIGN OF THE EXHAUST SYSTEM. THE DISCHARGED COOLING WATER MUST BE EXHAUSTED ABOVE THE WATERLINE TO AVOID EXCESSIVE BACK PRESSURE ON THE ENGINE AND PREVENT SEA WATER FROM TRAVELING UP THE EXHAUST LINE AND ENTERING THE ENGINE.

TO EXHAUST THE ENGINE ABOVE THE WATERLINE, THE DISCHARGED COOLING WATER AND EXHAUST GAS MUST BE "LIFTED" TO A LEVEL ABOVE THE THRU HULL FITTING ON THE TRANSOM.

IN THE CATALINA 30, THE EXHAUST COOLING WATER AND EXHAUST GAS ARE LIFTED ABOVE THE WATERLINE BY AN "AQUA-LIFT" TYPE MUFFLER. THE AQUALIFT MUFFLER PERFORMS THREE JOBS:

1. IT MIXES ENGINE GAS AND WATER TO COOL THE GAS AND LOWER EXHAUST LINE TEMPERATURE.

2. IT BAFFLES AND DEADENS ENGINE EXHAUST NOISE.

3. IT CREATES PRESSURE REQUIRED TO LIFT AND EXPEL COOLING WATER.

AS SHOWN IN ILLUSTRATION 4.4.8, THE INLET TUBE INTO THE AQUALIFT IS SHORT AND THE OUTLET TUBE IS LONG NEAT THE BOTTOM OF THE TANK.

AS WATER ACCUMULATES IN THE BOTTOM OF THE TANK, EXHAUST GAS PRESSURE BUILDS IN THE TOP OF THE TANK. THIS FORCES THE COOLING WATER UP THE EXIT TUBE AND THROUGH EXHAUST LINE OVERBOARD.

THE SYSTEM REQUIRES EXHAUST PRESSURE IN THE TANK TO FUNCTION. WHEN THE STARTER MOTOR IS TURNING OVER, BEFORE THE ENGINE FIRES, WATER IS BEING PUMPED THROUGH THE COOLING SYSTEM BY THE BELT DRIVEN COOLING WATER PUMP. IT IS VERY IMPORTANT NOT TO OPERATE THE STARTER MOTOR FOR MORE THAN 30 SECONDS IF THE ENGINE DOES NOT FIRE. SHOULD IT BE NECESSARY TO OPERATE THE STARTER MOTOR MORE THAN 30 SECONDS, WATER MUST BE DRAINED FROM THE AQUALIFT BY REMOVING THE DRAIN SCREW AT THE BASE OF THE AQUALIFT.

THE DRAIN SCREW MAY BE REMOVED UNTIL THE ENGINE FIRES, IF DESIRED. ALL CATALINA 30'S ARE EQUIPPED WITH ANTI-SYPHON VALVES AS AN ADDITIONAL PRECAUTION TO PREVENT COOLING WATER FROM ENTERING THE ENGINE.

REFER TO ITEM "B" OF ILLUSTRATION 4.4.8. THE FUNCTION OF THE ANTI-SYPHON VALVE
IS TO PREVENT COOLING WATER FROM BEING SYPHONED THROUGH THE THRU HULL VALVE, THROUGH THE ENGINE COOLING SYSTEM AND INTO THE AQUALIFT MUFFLER WHEN THE ENGINE IS NOT OPERATING.

IF THE MUFFLER WERE TO FILL COMPLETELY WITH WATER, WATER WOULD TRAVEL UP THE INLET TUBE AND ENTER THE ENGINE BLOCK.

THE CATALINA 30 EXHAUST SYSTEM IS BASICALLY SIMPLE AND WILL PROVIDE TROUBLE FREE SERVICE IF YOU PERFORM REGULAR MAINTENANCE AND INSPECTION. THE IMPORTANT POINTS TO REMEMBER ARE:

1. CLOSE THE ENGINE COOLING WATER THRU HULL VALVE WHEN YOU ARE NOT OPERATING THE ENGINE.

2. DO NOT OPERATE THE STARTER MOTOR FOR MORE THAN 30 SECONDS WITHOUT DRAINING THE AQUALIFT MUFFLER.

3. PERIODICALLY DISASSEMBLE THE ANTI-SYPHON VALVE. BE SURE THE GASKET IS NOT FOULED WITH SALT DEPOSITS AND THAT IT MOVES FREELY UNDER THE CAP.

4. CHECK THE OPERATION BY REMOVING THE VALVE:
 A. PUT A FINGER OVER ONE LARGE HOLE AND BLOW THROUGH THE OTHER. AIR SHOULD NOT ESCAPE THROUGH THE CAP.
 B. IF YOU SUCK THROUGH ONE LARGE HOLE WITH A FINGER OVER THE OTHER, AIR SHOULD ENTER THE VALVE THROUGH THE CAP.

5. CHECK THE FLAPPER VALVE ON THE TRANSOM. THIS PREVENTS WATER FROM SURGING UP THE EXHAUST LINE IN A FOLLOWING SEA. REPLACE THE FLAP AS REQUIRED TO MAINTAIN FUNCTION.
4.0 YACHT SYSTEMS (CONT'D)

4.1 EMERGENCY TILLER:

IT IS RECOMMENDED THE SKIPPER AND CREW BECOME FAMILIAR WITH
THE EMERGENCY TILLER AND ITS USE.

THE EMERGENCY TILLER IS STORED IN A RED BAG IN THE AFT LAZARETTE.

A DRY RUN OF THE SYSTEM WILL MINIMIZE CONFUSION IN AN EMERGENCY:

1. LOCATE THE EMERGENCY TILLER.

2. REMOVE INSPECTION PORT COVER.

3. INSERT THE EMERGENCY STEERING TILLER IN THE TOP OF THE
RUDDER POST.

NOTE: THE EMERGENCY TILLER MOVES THE WHOLE STEERING, INCLUDING CABLES AND QUADRANT. THESE ELEMENTS MUST BE FREE
TO MOVE IN ORDER TO STEER THE BOAT.
4.0 YACHT SYSTEMS (CONT'D)

4.7.2 GALLEY STOVE:

THERE IS PROVISION FOR A GIMBALLED STOVE WITH OVEN ON THE PORT SIDE OF THE GALLEY AREA. A TWO BURNER PRESSURE ALCOHOL STOVE IS FACTORY STANDARD INSTALLATION. IT COMES WITH AN OPERATION AND MAINTENANCE BOOKLET PROVIDED BY THE STOVE MANUFACTURER. A C.N.G. STOVE WITH OVEN IS AVAILABLE AS A FACTORY OPTION. FOLLOW THE INSTRUCTIONS FOR OPERATION CAREFULLY WHEN USING THE STOVE. ALTHOUGH COMPRESSED NATURAL GAS IS AMONG THE SAFEST OF COOKING FUELS, EXTREME CAUTION SHOULD BE USED WHEN COOKING ABOARD OR HANDLING C.N.G. FUEL TANKS. A FEW ADDITIONAL POINTS ON OPERATION OF THE STANDARD ALCOHOL STOVE ARE BELOW.

THE 2 GALLON PRESSURE TANK IS LOCATED IN THE COCKPIT Stern LOCKER. WHEN FILLING THIS TANK, PLEASE OBSERVE THE FOLLOWING BEFORE REMOVING THE STOPPER.

1. ALL BURNERS ARE OFF.

2. MAIN ALCOHOL SHUTOFF VALVE ON TOP OF PRESSURE TANK IS CLOSED.

3. TANK PRESSURE IS ZERO; REMOVE STOPPER.

4. FILL THE TANK 3/4 FULL TO ALLOW FOR AIR PRESSURE.

5. REPLACE STOPPER AND SCREW DOWN TIGHT.

6. EXPERIENCE HAS SHOWN THAT 5 POUNDS OF TANK PRESSURE IS MORE THAN ADEQUATE AND IMPOSES LESS STRAIN ON THE FITTINGS THAN THE RECOMMENDED 10 POUNDS.
5.0 DECOMMISSIONING

5.1 WINTERIZING YOUR ENGINE:

LAYING UP:

IN COLD CLIMATES WHERE YACHTS ARE DECOMMISSIONED DURING THE WINTER, YOUR CATALINA 30 MAY BE SAFELY STORED IN THE WATER PROVIDED ADEQUATE MEASURES ARE TAKEN TO PREVENT ICE DAMAGE TO THE HULL. CHECK WITH YOUR YARD TO DETERMINE THE FEASIBILITY OF STORING IN THE WATER.

WHEN THE BOAT IS TO BE STORED ON LAND, THE MAST MAY BE LEFT STEPPED ON THE DECK. HOWEVER, IT IS RECOMMENDED THE MAST BE REMOVED AT THE TIME OF HAULING FOR A THOROUGH INSPECTION AND PREPARATION FOR NEXT SEASON.

THIS ALLOWS PLENTY OF TIME TO ORDER AND REPLACE AND SHROUDS OR RIGGING PARTS NEEDED OVER THE WINTER MONTHS, AVOIDING ANY DELAYS IN THE SPRING COMMISSIONING.

FOLLOWING PROPER LAY-UP PROCEDURES WILL MINIMIZE THE EFFORT NEEDED TO RECOMMISION IN THE SPRING.

BEFORE HAULING:

1. REFER TO ENGINE MANUAL INSTRUCTIONS FOR WINTERIZING THE ENGINE. PERFORM THE APPROPRIATE IN WATER STEPS.

2. CONSULT THE MANUFACTURER'S INSTRUCTIONS FOR WINTERIZING ANY OPTIONAL OR OWNER INSTALLED EQUIPMENT.

3. INSPECT THE CRADLE ON WHICH THE BOAT WILL BE STORED. CHECK WELDS AND PADDED POMPITS FOR CONDITION AND REPAIR AS REQUIRED.

4. LIFT THE BOAT WITH STRAPS AT THE LOCATIONS ILLUSTRATED.

AFTER HAULING:

1. WASH BOTTOM, REMOVING GROWTH AND LOOSE PAINT.

2. WASH TOPSIDES, DECK, AND ALL OTHER EXTERIOR FIBERGLASS SURFACES. WAX ALL EXCEPT THE NONSKID SURFACES.

3. REMOVE ALL SAILS. FOLLOW SAILMAKER'S INSTRUCTIONS IN REGARD TO CLEANING. SCHEDULE ANY REPAIRS REQUIRED AND STORE IN A DRY PLACE.

4. REMOVE ALL SHEETS AND LINES, CLEAN, STORE IN A DRY PLACE.

5. IF THE MAST HAD BEEN REMOVED FROM THE YACHT, REMOVE ALL STAYS AND SHROUDS FROM THE MAST. WASH THE ENTIRE STAY OR SHROUD ASSEMBLY, USING FRESH WATER AND A STIFF BRUSH. DRY THOROUGHLY, AND COIL INTO LARGE NONKINKING COILS. STORE THE COILS IN A DRY PLACE. WASH AND WAX ALL SPARS. COIL HALYARD INTO NONKINKING COILS, AND PUT IN A DARK COLORED PLASTIC BAG TO PROTECT FROM SUNLIGHT IF STORING OUTDOORS. LASH THEM TO THE MAST. STORE THE MAST EITHER
INSIDE OR OUTSIDE WITH ADEQUATE SUPPORT ALONG ITS LENGTH.

6. IF MAST IS TO BE LEFT IN PLACE, REMOVE THE BOOM, CLEAN AND STORE AS DESCRIBED BEFORE. CLEAN SHROUD/STAY END FITTINGS, TOGGLES ETC. USING FRESH WATER AND A STIFF BRUSH. APPLY A LIGHT COAT OF SILICONE GREASE, PAYING PARTICULAR ATTENTION TO THE END FITTINGS WHERE THEY CONNECT TO THE STAYS AND SHROUDS.

7. CLEAN AND LUBRICATE ALL DFCK HARDWARE THAT CONTAIN MOVEABLE PARTS. FOLLOW MANUFACTURER'S INSTRUCTIONS ON WINCHES.

8. REMOVE ALL GEAR SUCH AS BOOKS, DOCUMENTS, BEDDING, PFD'S, ANYTHING MOVEABLE THAT IS SUBJECT TO RUST, CORROSION OR MILDEW.

9. REMOVE ALL FOOD SUPPLIES FROM LOCKERS AND ICE CHEST. WASH OUT ICE CHEST INTERIOR WITH A WEAK SOLUTION OF CLOROX. LEAVE ICE CHEST LID OPEN.

10. STORED BATTERIES SHOULD BE FULLY CHARGED, AND BOTH POSITIVE AND NEGATIVE TERMINALS SHOULD BE DISCONNECTED. THE BATTERIES MAY BE EITHER LEFT ABOARD OR STORED IN A COOL, DRY PLACE. SUB ZERO TEMPERATURES WILL NOT HARM A FULLY CHARGED BATTERY.

11. CLOSE ALL MANUAL SHUTOFFS FOR THE STOVE FUEL SYSTEM.

12. WINTERIZE THE HEAD SYSTEM IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.

13. WINTERIZE THE HOT AND COLD WATER SYSTEM IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.

14. REMOVE ALL ELECTRONIC GEAR THAT MAY REQUIRE SERVICING DURING THE WINTER.

15. REMOVE FIRE EXTINGUISHERS FOR WEIGHING, CHECKING, AND ANY NECESSARY RECHARGING. IF AN AUTOMATIC FIRE EXTINGUISHING SYSTEM IS INSTALLED, RETURN THE CYLINDERS TO THE YACHT AND REINSTALL AS SOON AS POSSIBLE.

16. IF CUSHIONS ARE LEFT ABOARD, BRING COCKPIT CUSHIONS BELOW AND PLACE ALL CUSHIONS ON EDGE TO ENCOURAGE VENTILATION.

17. LEAVE ALL INTERIOR LOCKERS OPEN TO ENCOURAGE VENTILATION.

18. ENSURE THAT COCKPIT AND DECK SCUPPERS ARE OPEN AND FREE.

19. IF THE BOAT IS TO COVERED, ENSURE THAT THE COVER IS INSTALLED IN SUCH A WAY AS TO PROVIDE ADEQUATE VENTILATION, AND THAT THE COVER IS NOT PERMITTED TO CHAFF AGAINST THE HULL OR DECK.

20. IF THE BOAT IS NOT TO BE COVERED, ENSURE THAT MECHANISMS SUCH AS WINCHES AND STEERING PEDESTALS ARE PROVIDED WITH ADEQUATE COVERS.
21. IF THE MAST IS TO REMAIN STEPPED, SNUD ALL SHROUDES AND HALYARDS TO MINIMIZE NOISE AND WEAR.

GENERAL NOTES:

WE RECOMMEND THE FOLLOWING PROCEDURES BE FOLLOWED WHEN STORING THE YACHT FOR PROLONGED WINTER MONTHS. BEGIN BY CONSULTING YOUR AUTHORIZED DEALER ABOUT STORING THE BOAT IN OR OUT OF WATER IN FREEZING CLIMATES. IF AT ALL POSSIBLE, THE MANUFACTURER RECOMMENDS KEEPING THE YACHT IN DRY STORAGE FOR SEVERE WINTERS.

ALL THRU HULL FITTINGS SHOULD BE DRAINED AND CLOSED OFF. WATER IN THE SANITATION SYSTEM AND OTHER TANKS SHOULD BE PUMPED OUT.

FOR DIESEL ENGINES, CONSULT THE MANUFACTURER’S MANUAL FOR SPECIAL INSTRUCTIONS. FOR MOST GASOLINE ENGINES PROCEED AS FOLLOWS:

UNLESS MANUFACTURER’S MANUAL STATES OTHERWISE, DRAIN THE BLOCK, DISCONNECT THE WATER INTAKE HOSE FROM THE THRU HULL FITTINGS, ATTACH AN ADDITIONAL LENGTH OF HOSE AND PLACE THE END OF THIS HOSE IN A BUCKET OF ANTIFREEZE. RUN THE ENGINE UNTIL STRAIGHT ANTIFREEZE COMES OUT THE EXHAUST LINE. STOP THE ENGINE AT THIS POINT, PLUG OR CAP THE EXHAUST LINE, AND REMOVE THE ADDITIONAL HOSE AND BUCKET.

REMOVE THE SPARK PLUGS AND POUR A TABLESPOON OF OIL INTO EACH CYLINDER. TURN OVER THE ENGINE ONE COMPLETE REVOLUTION BY "BUMPING" THE STARTER BRIEFLY. REPLACE THE SPARK PLUGS
6.0 OWNER-USER RESPONSIBILITY

6.1 GENERAL SAFETY TIPS:

1. DON'T VENTURE OUT WHEN THE WEATHER CONDITIONS ARE UNFAVORABLE OR ARE PREDICTED TO BECOME SO. LISTEN TO WEATHER FORECASTS, CHECK WITH YOUR HARBOR PATROL OFFICE, AND LOOK OUT FOR SMALL CRAFT STORM WARNINGS.

2. BE ESPECIALLY CAREFUL IN AREAS WHERE THERE MAY BE COMMERCIAL SHIPPING TRAFFIC. KEEP WILL AWAY FROM SHIPPING CHANNELS.

3. LEARN THE RULES OF THE ROAD. ALL OTHER SAILORS WILL EXPECT YOU TO KNOW THEM AND ABIDE BY THEM. THE U.S. COAST GUARD (BFE-2) 400 S. ELEVENTH ST., S.W., WASHINGTON, D.C. 20590, WILL SUPPLY FREE LITERATURE ON THIS. YOUR LOCAL BRANCH OR HARBOR PATROL OFFICE MAY HAVE IT AVAILABLE.

4. IF YOUR BOAT HAS A GENOA SAIL THAT OBSCURES THE HELSMAN'S VISION, HAVE A DEPENDABLE PERSON IN THE CREW KEEP A SHARP LOOK OUT UNDER THE JIB SAIL FOR ONCOMING TRAFFIC.

5. WHEN SAILING AT NIGHT, PROVIDE SAFETY HARNESSSES FOR YOURSELF AND YOUR CREW, AND TIE THESE LINES TO THE BOAT. USE APPROVED HARNESSSES.

6. PURCHASE ALL COAST GUARD REQUIRED SAFETY EQUIPMENT AND LEARN HOW TO USE IT.

7. ENROLL IN A C.G. CLASS OR OTHER CERTIFIED BOATING AND SAILING CLASS. YOU WILL LEARN A LOT AND ENJOY SAILING EVEN MORE.

8. DO NOT TAKE MORE THAT A SAFE NUMBER OF PERSONS ABOARD YOUR BOAT WHEN SAILING.

9. MARINE INSURANCE IS WORTH EVERY PENNY YOU PAY FOR IT. TAKE OUT INSURANCE FROM THE START. SEE YOUR DEALER FOR A RECOMMENDED MARINE AGENT IF YOU DON'T HAVE ONE.

10. KEEP ALL SEAT HATCHES AND MAIN HATCH CLOSED DURING ROUGH WEATHER OR GUSTY WINDS WHICH COULD UNEXPECTEDLY STRIKE THE BOAT AND CAUSE A KNOCK DOWN.

11. CAUTION! THE ALUMINUM MAST, AND THE METAL PARTS CONDUCT ELECTRICITY. COMING IN CONTACT WITH, OR APPROACHING AN ELECTRICAL POWER LINE CAN BE FATAL. STAY AWAY FROM OVERHEAD POWER LINES AND WIRES OF ANY KIND, WHEN LAUNCHING, UNDERWAY, OR WHEN STATIONARY.

6.2 REQUIRED SAFETY EQUIPMENT:

FIRE EXTINGUISHER:

IT IS WISE TO LOCATE A MINIMUM OF TWO, APPROVED FOR MARINE USE, FIRE EXTINGUISHERS, ONE FOR FORWARD OF THE GALLEY AND ONE BEHIND THE GALLEY, PREFERABLY BELOW THE COCKPIT HATCH. SHOULD AN ALCOHOL STOVE OR ENGINE FIRE START, YOU CAN ALWAYS REACH A FIRE EXTINGUISHER.

FOR EXAMPLE, YOU DO NOT WANT TO LOCATE BOTH OF YOUR EXTINGUISHERS IN THE HEAD
OWNER-USER RESPONSIBILITY (CONTD)

AREA BECAUSE IF YOU ARE LOCATED IN THE COCKPIT, YOU WOULD HAVE TO GET BY THE DANGER AREA TO REACH THEM IF THE FIRE IS EITHER IN THE GALLEY OR ENGINE AREA.

DRY CHEMICAL EXTINGUISHERS SHOULD BE INVERTED OCCASIONALLY TO PREVENT THE CONTENTS FROM PACKING. EXTINGUISHERS SHOULD BE RECHARGED YEARLY OR AFTER EACH USE, ACCORDING TO MANUFACTURER'S RECOMMENDATIONS.

LIFE VESTS:

KEEP A COAST GUARD APPROVED LIFE VEST ON BOARD FOR EACH CREW MEMBER. WEAR THEM DURING ROUGH WEATHER AND NIGHT SAILING. CHILDREN SHOULD WEAR VESTS AT ALL TIMES NO MATTER HOW MUCH THEY OBJECT.

HORN:

YOUR YACHT SHOULD BE EQUIPPED WITH A HORN CAPABLE OF PRODUCING A BLAST THAT CAN BE HEARD FOR A DISTANCE OF ONE MILE.

FLARES:

THE LAW REQUIRES THAT YOUR YACHT BE EQUIPPED WITH A MINIMUM OF 3 DAY/NIGHT FLARES.

6.3 SUGGESTED SAFETY EQUIPMENT AND SAFETY PACKAGE:

MEDICAL KIT:

A BASIC MEDICAL KIT IS A WISE INVESTMENT FOR ANY BOAT OWNER. SUGGESTED ITEMS INCLUDE: MOTION SICKNESS PILLS, ASPIRIN, BANDAGES, ETC. WE RECOMMEND THAT YOU PERSONALIZE YOUR MEDICAL SUPPLIES FOR YOU AND YOUR CREWS SPECIFIC NEEDS.

TOOL KIT:

A VARIED ARRANGEMENT OF TOOLS IS AGAIN, A WISE INVESTMENT TO HAVE ON YOUR BOAT. TAILOR YOUR TOOL BOX FOR THE CONDITIONS THAT YOU SAIL. FOR LOCAL SAILING, WITH PROFESSIONAL HELP JUST A PHONE CALL AWAY, YOU ONLY NEED A SMALL ARRAY OF TOOLS. HOWEVER, FOR LONG RANGE CRUISING, A MORE EXTENSIVE SUPPLY OF TOOLS WILL BE NEEDED.

6.4 SAFETY PACKAGE, FACTORY OPTION:

<table>
<thead>
<tr>
<th>PACKAGE INCLUDES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EA</td>
<td>18-S ANCHOR</td>
</tr>
<tr>
<td>15 FT</td>
<td>5/16" GALVANIZED PC CHAIN</td>
</tr>
<tr>
<td>1 EA</td>
<td>1/2 X 200 ANCHOR LINE</td>
</tr>
<tr>
<td>2 EA</td>
<td>3/8" GALVANIZED SHACKLE</td>
</tr>
<tr>
<td>2 EA</td>
<td>6 X 15 FENDER w/LINE</td>
</tr>
<tr>
<td>10 FT</td>
<td>7/16" W. NYL. FENDER LINES (2 X 5)</td>
</tr>
<tr>
<td>1 EA</td>
<td>FOLDING ALUMINUM RADAR REFLECTOR</td>
</tr>
<tr>
<td>1 EA</td>
<td>FLARE KIT</td>
</tr>
<tr>
<td>1 EA</td>
<td>FREON AIR HORN</td>
</tr>
</tbody>
</table>
6.0 OWNER-USER RESPONSIBILITY (CONT'D)

Package

Includes Description
1 EA Brass Bell
2 EA Fire Extinguisher
1 PKG BP-2 Alkaline Batteries
1 EA Small Boat Handling
6 EA Adult Life Jackets
1 EA Flashlight
1 EA Throwable Cushion
2 EA 5/8 x 15 Dock Line

6.5 ANCHORS, ANCHORING, AND MOORING:

The manufacturer suggests an anchor in the 13 to 16 pound range to be used as a bow anchor in ordinary conditions. This anchor will only be effective with at least 6 feet of 1/4 inch or heavier guage chain and at least 7/16 inch or heavier nylon line.

Under adverse weather conditions, as much as a 25 pound bow anchor could prove necessary, and possibly a plough type anchor might be required.

Inquire in your local area about anchoring procedures relative to the place you plan to visit. Get the opinions of several experienced people. And always play it on the safe side in "making up" your anchor and in using it. Do not forget to wire all shackle pins so they cannot come loose under water.

Remember: Lighter anchors are made more effective by increasing the scope, i.e., the ratio of length of line and chain to depth of water. A 7:1 ratio is recommended. This means using 7 feet of anchor line for each foot in water depth.

6.6 LIGHTNING PRECAUTIONS:

Your yacht was not provided with a lightning protection system during construction. The reasons are as follows:

1. There is not a procedure for lightning protection which is proven reliable under all conditions. Yachts with elaborate lightning protection systems have sustained serious damage from a direct lightning strike.

2. If the builder were to assert that the yacht were lightning protected, it could instill a false sense of confidence in the owner or operator, leading to less than prudent actions when lightning threatened.

3. Lightning systems are "out of sight, out of mind", except when lightning threatens. Generally, they are not checked and maintained on a regular basis. A defect in the system (i.e., a break in a ground line) could, in some cases, increase the risk of personal harm and damage to the yacht, as compared to a yacht with no protection. The reason for this is that many lightning protection systems distribute the high voltage throughout the yacht before allowing it to exit through the ground.
4. IT IS IMPOSSIBLE FOR CATALINA YACHTS TO CONTROL CHANGES YOU THE OWNER, MAY MAKE TO THE YACHT, WHICH COULD AFFECT LIGHTNING PROTECTION SYSTEM.

YOU, THE OWNER, MUST DECIDE WHETHER YOU WISH TO EQUIP YOUR YACHT WITH LIGHTNING PROTECTION, AND IF SO, THE METHOD OF DOING SO. FOR YOUR GUIDANCE, A COPY OF ABYC RECOMMENDATIONS IS ATTACHED. THE FOLLOWING SUGGESTIONS AND COMMENTS ARE ALSO OFFERED:

1. KEEP THE SYSTEM AS SIMPLE AS POSSIBLE. THIS WILL FACILITATE BOTH INSTALLATION AND INSPECTION/MAINTENANCE. PERHAPS A SINGLE OVERSIZE GROUND (BATTERY CABLE) FROM THE MAST BASE TO THE ENGINE, COUPLED WITH EXTERNAL SHROUD GROUNDS (SEE 2 BELOW), WILL MAXIMIZE RELIABILITY.

2. ABYC RECOMMENDS STRAIGHT LINE WIRE RUNS, WHICH IS VIRTUALLY IMPOSSIBLE WITHIN THE YACHT. FOR GROUNDING THE SHROUDS, A BATTERY CABLE, WHICH CLIPS TO EACH SHROUD AND EXTENDS OUTSIDE THE YACHT TO THE WATER, CAN MINIMIZE THE NUMBER OF BENDS REQUIRED. THIS METHOD HAS THE ADDED ADVANTAGES OF KEEPING THE POWER SURGE OUTSIDE THE BOAT AND ALLOWING EASY AND ROUTINE INSPECTION. THE OBVIOUS DISADVANTAGE IS THAT THE CLIP ON CABLES ARE NOT A PERMANENT INSTALLATION AND MAY NOT BE IN PLACE WHEN AN UNEXPECTED LIGHTNING STRIKE OCCURS.

3. USE ONLY TOP QUALITY MATERIALS AND GO OVERSIZE WHERE POSSIBLE.

4. KEEP ALL PERMANENT ATTACHMENT POINTS AND CONNECTIONS WHERE THEY ARE READILY AVAILABLE FOR INSPECTION, YET PROTECTED FROM DAMAGE OR INADVERTANT DISCONNECTION.

FACTORY INSTALLED METAL TANKS, 110 VOLT SYSTEMS AND MAJOR COMPONENTS ARE GROUNDED TO THE ENGINE. THE ENGINE IS GROUNDED VIA THE SHAFT AND PROP TO THE WATER. THE PURPOSE OF THE INTERNAL GROUNDING IS FOR STATIC CHARGE CONTROL AND ACCIDENTAL SHORTS IN THE INTERNAL SYSTEMS—NOT TO PROVIDE LIGHTNING PROTECTION. HOWEVER, YOU CAN INCORPORATE THE GROUND LINES PRESENT IN A LIGHTNING PROTECTION SYSTEM YOU MAY WISH TO ADD.

BY FAR, THE MOST IMPORTANT CONSIDERATION REGARDING LIGHTNING IS OBSERVING COMMON SENSE SAFETY PRECAUTIONS WHEN LIGHTNING THREATENS. THE KEY CONSIDERATIONS ARE LISTED IN THE AMERICAN BOAT AND YACHT COUNCIL (ABYC).
RECOMMENDED PRACTICES AND STANDARDS COVERING LIGHTNING PROTECTION

PROJECT E-4

Based on ABYC’s assessment of the state of existing technology and the problems associated with achieving the requirements of this standard, ABYC recommends compliance with this standard by August 1, 1985.

E-4.1 PURPOSE

These recommended practices and standards establish requirements for the design, construction and installation of lightning protection equipment on boats.

E-4.2 SCOPE

These recommended practices and standards apply to power and sailboats as indicated.

NOTE: A lightning protection system offers no protection when the boat is out of water and is not intended to afford protection if any part of the boat comes in contact with power lines while afloat or ashore.

E-4.3 DEFINITIONS

a. Air Terminal – A metal rod that terminates in a sharp point.

b. Lightning Ground Plate – A means to conduct the electrical current from a boat’s conductive elements to the water in which the boat floats. A separate lightning ground plate may be used or it may also serve other purposes. (See ABYC E-4.6.g.)

c. Lightning Protective Mast – A conductive structure or if non-conductive, equipped with a conductive means and an air terminal.

d. Zone of Protection – An essentially cone shaped space below a grounded air terminal or mast or overhead ground wire which is substantially immune to direct strokes of lightning. (See Appendix)

E-4.4 REQUIREMENTS – IN GENERAL

Successful protection of persons and watercraft from lightning is dependent upon a combination of design and maintenance of equipment, and on personnel behavior. The basic guides contained in this standard shall be considered and used in designing and installing a lightning protection system. However, in view of the wide variation in structural design of boats, specific recommendations cannot be made to cover all cases.

- Design is covered in this and the following sections of this standard.
- Maintenance of equipment is covered in the Appendix.
- Personnel behavior is covered in the Appendix.

a. To provide an adequately grounded conductor or lightning protective mast, the entire circuit from the top of the mast to the ground shall have a conductivity not less than that of an 8 AWG copper conductor and the path to ground followed by the conductor shall be essentially straight.

b. If there are large metal objects such as tanks, engines, deck winches, stoves, etc. in proximity to the grounding conductor, there will be a strong tendency for sparks or sideflashes to jump from the grounding conductor to the metal object at the closest point. To prevent damage from such sideflashes, an interconnecting conductor at least equal to 8 AWG copper shall be provided at all places where they are likely to occur.

c. Large metallic objects which are not part of the electrical system of the boat and which are not already grounded due to their own functional or other requirements may be grounded directly to the ground plate, provided that it is not practical to interconnect with the lightning conductor or bonding systems. (See ABYC E-4.6.d.)
E-4.5. REQUIREMENTS – MATERIALS

a. Corrosion – The material used in a lightning protective system shall be resistant to corrosion. If, as in certain installations, it is impractical to avoid a junction of dissimilar metals, the corrosion effects can be reduced by the use of suitable platings or special connectors which are available for such purposes.

b. Wire Conductors –

(1) Wire conductors shall be stranded copper not less than 8 AWG.

(2) The size of any strand of a bare copper wire shall be not less than 17 AWG. Stranding of insulated copper wire shall be Type II stranding per ABYC E-8, "AC Electrical Systems" or ABYC E-9, "DC Electrical Systems Under 50 Volts".

c. Other Conductive Means –

(1) Conductivity shall be equal to or greater than 8 AWG copper wire.

(2) The thickness of metal ribbon or strip shall be at least 1/32 inches.

E-4.6. REQUIREMENTS – INSTALLATIONS

a. Conductive Joints – Conductive joints shall be made and supported in accordance with ABYC E-9, "DC Electrical Systems Under 50 Volts".

b. Lightning Protective Mast Height – A lightning protective mast shall be of a height to provide the desired zone of protection in accordance with the following:

(1) For a mast height not exceeding 50 feet (15m) above the water, the base radius is approximately equal to the mast height. (See Figures 1 and 2)

(2) For mast heights in excess of 50 feet (15m) the zone of protection is based on the striking distance of the lightning stroke. Since the lightning stroke may strike any grounded object within the striking distance of the point from which final breakdown to ground occurs, the zone of protection is defined by a circular arc. (See Figure 3) The radius of the arc is the striking distance (100 feet (30m)). The arc passes through the tip of the mast and is tangent to the water. If more than one mast is used, the zone of protection is defined by arcs to all masts.

(3) The zone of protection afforded by any configuration of masts or other elevated, conductive, grounded objects can readily be determined graphically. Increasing the height of a mast above the striking distance will not increase the zone of protection.

c. Lightning Protective Mast Alternatives –

(1) If the mast is of non-conducting material, the associated lightning or grounding conductor shall:

(a) be essentially straight,

(b) be securely fastened to the mast,

(c) extend at least 6 inches (150mm) above the mast,

(d) terminate in an air terminal, and

(e) be led as directly as practicable to the grounding connection. (See ABYC E-4.9.)
(2) A radio antenna or outrigger may serve as a lightning protective mast provided it has conductivity equivalent to 8 AWG copper and is equipped with:

(a) lightning arresters,

(b) lightning protective gaps, or

(c) means for grounding during electrical storms.

NOTE: Non-conducting antenna masts with spirally wrapped conductors are not considered suitable for lightning protection purposes.

(3) The grounding of metal rod type radio antennas provides some protection for boats without masts and spars, provided:

(a) Conductors in the grounding circuit of the antenna have a conductivity equivalent to 8 AWG copper in accordance with ABYC E-4.5.b.

(b) The top of the antenna is not more than 50 ft. (15m) above the water, and a line drawn from the top of the antenna downward toward the water at an angle of 45 degrees to the vertical does not intercept any part of the boat. (See ABYC E-4.6.b.)

(c) The antenna loading coil is provided with a suitable protective device for bypassing the lightning current.

NOTE: Because a loading coil presents a high impedance to the flow of lightning current, the portion of an antenna above the bottom of a loading coil is not effective as a lightning protective mast.

d. Interconnection of Metallic Masses — Metallic masses aboard boats which are a permanent part of the boat or are permanently installed within or about the boat, and whose function would not be seriously affected by grounding, shall be made a part of the lightning-conductor system by interconnection with it. (See ABYC E-4.6.f.)

EXCEPTION: Comparatively small size metallic masses.

NOTES: 1. The object of interconnecting the metal parts of a boat with the conductor is to prevent damage from sideflashes, especially in the case of rather extensive metal objects that are nearby. The main principle to be observed in the prevention of such damage is to identify on a boat the places where sideflashes are most likely to occur and to provide metallic paths for them.

2. To minimize flow of lightning discharge current through engine bearings, it may be preferable to bond engine blocks directly to the ground plate rather than to an intermediate point on the lightning conductor.

e. Exterior Bodies of Metal — Metal situated wholly on the exterior of boats shall be electrically connected to the grounding conductor.

NOTE: Exterior metal bodies on boats include any large masses such as horizontal guardrails, handrails on cabin tops, smokestacks from galley stoves, electric winches, davits, metal signal masts, and metallic hatches.

f. Interior Bodies of Metal — Metal situated wholly in the interior of boats and which at any point comes within 6 ft. (1.8m) of a lightning conductor shall be electrically interconnected with this lightning conductor.

NOTE: Interior bodies of metal include engines, water and fuel tanks, and control rods for steering gear or reversing gear. It is not intended that small metal objects such as compasses, clocks, galley stoves, medicine chests, and other parts of the boat’s hardware be grounded.
(E-4.6.f.)

(1) Metal which projects through cabin tops, decks or sides of boats above the sheer shall be bonded to the nearest lightning conductor at the point where the metal emerges from the boat and shall be grounded at its lower or extreme end within the boat.

(2) In order to protect the radio transmitter, antenna feedlines shall be:

(a) equipped with means for grounding during electrical storms, or

(b) protected by lightning arresters or lightning protective gaps.

g. Lightning Ground Connection – A lightning ground connection for a boat may consist of any metal surface which is submerged in the water and which has an area of at least 1 sq. ft. (0.093m²).

(1) Metallic rudder surfaces, metal centerboards and keels, or the ground plate for radio transmitters may be used for this purpose.

(2) A metal hull itself constitutes an adequate lightning ground plate.

E-4.7. REQUIREMENTS – VESSELS WITH METAL HULLS

If there is electrical continuity between metal hulls and masts or other metallic superstructure of adequate height in accordance with ABYC E-4.5., then no further protection against lightning is necessary.

E-4.8. REQUIREMENTS – SAILBOATS WITH NON-METALLIC HULLS

a. Sailboats with metallic standing rigging will be adequately protected provided that all rigging is grounded so that the mast and rigging meet the requirements of ABYC E-4.5. and E-4.6.

b. Sailboats will be adequately protected if all shrouds, back stays, preventers and continuous metallic track on the mast and boom are grounded. These shall be electrically connected at the lower or forward end and grounded to a metal plate on the hull or to a metal rudder, centerboard or keel.

c. All stays and sail tracks shall be grounded.

d. Grounding of other objects on sailboats shall be in accordance with ABYC E-4.6.

e. Multihull boats shall provide a lightning ground connection in accordance with ABYC E-4.6.g. for each hull that has items to be grounded, attached, or fitted to it.

E-4.9. REQUIREMENTS – POWER BOATS WITH NON-METALLIC HULLS

a. Power boats may be adequately protected by a grounded radio antenna, outrigger, or other grounded lightning protective mast in compliance with ABYC E-4.6., provided the height of the mast conforms to that described for the zone of protection.

b. Interconnection and grounding of metallic masses shall be in accordance with ABYC E-4.6.

E-4.10 REQUIREMENTS – SMALL BOATS

a. Small boats may be protected by means of a temporary lightning protective mast which may be erected when lightning conditions are observed in the distance.

b. Grounding provisions may be made by means of a flexible copper wire and a submerged ground plate of at least 1 square foot (0.093m²) in area.

©1985 American Boat and Yacht Council, Inc.
FIGURE 3 - BOAT WITH MASTS IN EXCESS OF 50 ft. (15m) ABOVE THE WATER - PROTECTION IS BASED ON LIGHTNING STRIKING DISTANCE OF 100 ft. (30m)

PROTECTED ZONE INSIDE AREA OUTLINED BY DASHED LINES

MASTS IN EXCESS OF 50 ft. (15m)

© 1985 American Boat and Yacht Council, Inc.
APPENDIX – LIGHTNING PROTECTION

This appendix contains additional information of a descriptive nature and recommendations pertaining to maintenance and behavior of personnel.

E-4.Ap.1. Zone of Protection – A grounded conductor, or lightning protective mast, will generally divert to itself direct hits which might otherwise fall within a cone-shaped space, the apex of which is the top of the conductor of lightning protective mast and the base a circle at the surface of the water having a radius which is related to the height of the top of the conductor or lightning protective mast.

a. To protect a boat of the size that renders the use of a single mast impracticable, additional lightning protective means shall be erected to form overlapping zones of protection.

b. Boats with ungrounded or non-conductive objects projecting above the metal masts or superstructure may have these objects protected by a lightning ground conductor terminating in an air terminal above the object.

c. Whip-type radio antennas shall not be tied down during a lightning storm if they have been designed as a part of the lightning protection system.

E-4.Ap.2. Maintenance – Lightning protection provisions are quite likely to receive scant attention after installation, and therefore their composition and assembly shall be strong and materials used shall be highly resistant to corrosion.

a. Grounding of metallic objects for lightning protection may increase the possibility of harmful galvanic corrosion. (See ABYC E-2, “Cathodic Protection”)

b. If a boat has been struck by lightning, compasses, electrical and electronic gear shall be checked to determine whether damage or changes in calibration has taken place.

c. If a boat has been struck by lightning the lightning protection system shall be inspected for physical damage, system integrity and continuity to ground.

E-4.Ap.3. Precautions for Personnel – The basic purpose of protection against lightning is to ensure the safety of personnel. It is therefore appropriate that the following precautions be taken:

a. Personnel shall remain inside a closed boat, as far as practical, during a lightning storm,

b. Arms and legs shall NOT be dangled in the water,

c. Consistent with safe handling and navigation of the boat during a lightning storm, personnel shall avoid making contact with any items connected to a lightning protection system and especially in such a way as to bridge between these items; for example it is undesirable that an operator be in contact with reversing gear levers and a spotlight control handle at the same time,

d. Personnel shall NOT be in the water during a lightning storm, and

e. Personnel shall avoid contact with metal parts of a sailboat’s rigging, spars, fittings and railings.

©1985 American Boat and Yacht Council, Inc.